Skip to main content

Unfolding the Role of Rhizomicrobiome Toward Sustainable Agriculture

  • Chapter
  • First Online:
Book cover Root Biology

Part of the book series: Soil Biology ((SOILBIOL,volume 52))

Abstract

Sustainable agriculture symbolizes accomplished utilization of natural resources while ensuring the well-being of natural environment. It integrates the goals of environmental preservation, economic growth, and socioeconomic equality. For sustainable development of the human world, sustainable agriculture is the need of the hour. The broad application of microbes in sustainable agriculture is due to the genetic dependency of plants on the beneficial functions provided by symbiotic microbes. They can play instrumental role in transforming conventional agriculture to the sustainable one. Diverse microbial communities are symbiotically associated with plants as endophytes and epiphytes and rhizospheric communities. Structural as well as functional diversity exists among these communities. For the better understanding and positive exploitation of such communities in sustainable agriculture, it is inevitable to study each community individually. In the present chapter, the importance of rhizospheric communities, which can also be called as the rhizomicrobiome, has been addressed. Rhizosphere is the area around plant roots influenced by root exudates. It is a complex system in terms of chemical, biological, as well as physical properties. Plant–microbe interactions in the rhizosphere involve diverse relationships including plant growth promotion, plant protection, pathogenesis, competition, etc. Rhizospheric microbes are involved in the biogeochemical cycling of organic matter as well as mineral nutrients. Microbe-based growth promotion in plants could provide effective ways of developing sustainable agriculture in order to ensure human and animal food production with a minimal disturbance of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarab S, Ollero FJ, Megias M, Laglaoui A, Bakkali M, Arakrak A (2017) Simultaneous P-solubilizing and biocontrol activity of rhizobacteria isolated from rice rhizosphere soil. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics in agroecosystem. Springer, Singapore, pp 207–215

    Chapter  Google Scholar 

  • Abdeljalil NOB, Vallance J, Gerbore J, Bruez E, Martins G, Rey P, Daami RM (2016) Biocontrol of Rhizoctonia root rot in tomato and enhancement of plant growth using rhizobacteria naturally associated to tomato. J Plant Pathol Microbiol 7:356. https://doi.org/10.4172/2157-7471.1000356

    Article  Google Scholar 

  • Abed H, Rouag N, Mouatassem D, Rouabhi A (2016) Screening for Pseudomonas and Bacillus antagonistic rhizobacteria strains for the biocontrol of Fusarium wilt of chickpea. Eur J Soil Sci 5(3):166–182

    Google Scholar 

  • Acebo-Guerrero Y, Hernandez-Rodríguez A, Vandeputte O, Miguelez-Sierra Y, Heydrich-Pérez M, Ye L, Cornelis P, Bertin P, El Jaziri M (2015) Characterization of Pseudomonas chlororaphis from Theobroma cacao L. rhizosphere with antagonistic activity against Phytophthora palmivora (Butler). J Appl Microbiol 119(4):1112–1126

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye A, Kloepper J (2009) Plant–microbe interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Ahmed MF, El-Fiki IA (2017) Effect of biological control of root rot diseases of Strawberry using Trichoderma spp. Sciences 7(3):482–492

    Google Scholar 

  • Ahmed E, Holmstrom SJ (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7(3):196–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali M, Shahid AA, Haider MS (2016) Isolation and in-vitro screening of potential antagonistic rhizobacteria against Pythium debaryanum. Pak J Phytopathol 28(2):231–240

    Google Scholar 

  • Apastambh AR, Tanveer K, Baig MM (2016) Isolation and characterization of Plant growth promoting rhizobacteria from Banana rhizosphere. Int J Curr Microbiol App Sci 5(2):59–65

    Article  CAS  Google Scholar 

  • Arora NK, Khare E, Oh JH, Kang SC, Maheshwari DK (2008) Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World J Microbiol Biotechnol 24(4):581–585

    Article  Google Scholar 

  • Azizpour N, Rouhrazi K (2016) Isolation and characterization of rhizosphere bacteria for the biocontrol of the Asochyta Rabiei in Iran. Adv Plants Agric Res 3(4):00104

    Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Bal HB, Das S, Dangar TK, Adhya TK (2013) ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbiol 53(12):972–984

    Article  CAS  PubMed  Google Scholar 

  • Barnawal D, Pandey SS, Bharti N, Pandey A, Ray T, Singh S, Kalra A (2017) ACC deaminase-containing plant growth-promoting rhizobacteria protect Papaver somniferum from downy mildew. J Appl Microbiol 122(5):1286–1298

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Boukerma L, Benchabane M, Charif A, Khelifi L (2017) Activity of plant growth promoting rhizobacteria (PGPRs) in the biocontrol of tomato Fusarium wilt. Plant Protect Sci 53(2):74–84

    Google Scholar 

  • Bulgarelli D, Ruben G, Munch PC, Weiman A, Droge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17(3):392–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan A, Guleria S, Balgir PP, Walia A, Mahajan R, Mehta P, Shirkot CK (2017) Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect. Braz J Microbiol 48(2):294–304

    Article  PubMed  Google Scholar 

  • Di Benedetto NA, Corbo MR, Campaniello D, Cataldi MP, Bevilacqua A, Sinigaglia M, Flagella Z (2017) The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat. AIMS Microbiol 3(3):413–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinesh R, Anandaraj M, Kumar A, Bini YK, Subila KP, Aravind R (2015) Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol Res 173:34–43

    Article  PubMed  Google Scholar 

  • Dorjey S, Dolkar D, Sharma R (2017) Plant growth promoting rhizobacteria Pseudomonas: a review. Int J Curr Microbiol App Sci 6(7):1335–1344

    Article  Google Scholar 

  • Elias F, Woyessa D, Muleta D (2016) Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma Zone, Southwest Ethiopia. Int J Microbiol. https://doi.org/10.1155/2016/5472601

  • Fan ZY, Miao CP, Qiao XG, Zheng YK, Chen HH, Chen YW, Xu LH, Zhao LX, Guan HL (2016) Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng. J Ginseng Res 40(2):97–104

    Article  CAS  PubMed  Google Scholar 

  • Felestrino EB, Santiago IF, da Silva FL, Rosa LH, Ribeiro SP, Moreira LM (2017) Plant growth promoting bacteria associated with Langsdorffia hypogaea-rhizosphere-host biological interface: a neglected model of bacterial prospection. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00172

  • Fernando WD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37(5):955–964

    Article  CAS  Google Scholar 

  • Ferraz HG, Resende RS, Moreira PC, Silveira PR, Milagres EA, Oliveira JR, Rodrigues FA (2015) Antagonistic rhizobacteria and jasmonic acid induce resistance against tomato bacterial spot. Bragantia 74(4):417–427

    Article  Google Scholar 

  • Gaby JC, Buckley DH (2012) A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. Plos One 7(7):e42149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gad MA, Deka M, Ibrahim NA, Mahmoud SS, Kharwar RN, Bora TC (2014) Biocontrol of phytopathogenic fungi of rice crop using plant growth-promoting rhizobacteria. In: Kharwar RN, Upadhyay RS, Dubey NK, Raghuwanshi R (eds) Microbial diversity and biotechnology in food security. Springer, New Delhi, pp 225–234

    Google Scholar 

  • Giorgio A, Cantore PL, Shanmugaiah V, Lamorte D, Iacobellis NS (2016) Rhizobacteria isolated from common bean in southern Italy as potential biocontrol agents against common bacterial blight. Eur J Plant Pathol 144(2):297–309

    Article  CAS  Google Scholar 

  • Gowtham HG, Hariprasad P, Nayak SC, Niranjana SR (2016) Application of rhizobacteria antagonistic to Fusarium oxysporum f. sp. lycopersici for the management of Fusarium wilt in tomato. Rhizosphere 2:72–74

    Article  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7(2):96–102

    CAS  Google Scholar 

  • Haile D, Mekbib F, Assefa F (2016) Isolation of phosphate solubilizing bacteria from white Lupin (Lupinus albus L.) rhizosphere soils collected from Gojam, Ethiopia. J Fertil Pestic 7:172. https://doi.org/10.4172/2471-2728.1000172

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2(11):43–56

    Article  CAS  PubMed  Google Scholar 

  • Hao D, Xiao P (2017) Rhizosphere microbiota and microbiome of medicinal plants: from molecular biology to omics approaches. Chin Herb Med 9:199–217

    Article  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M, Hiltner L (2008) A pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    Article  CAS  Google Scholar 

  • Hassan EA, Balabel NM, Ahmed AE, Eid NA (2017) Relationship between Ralstonia solanacearum and bioagents recovered from different habitats. Int J Sci Eng Res 8(1):91–104

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Article  Google Scholar 

  • Inam-Ul-Haq M, Tahir M, Hayat R, Khalid R, Ashfaq M (2015) Bioefficacy of rhizobacterial against root infecting fungal pathogens of Chickpea (Cicer arietinum L.) J Plant Pathol Microbiol S3:011. https://doi.org/10.4172/2157-7471.S3-011

    Article  Google Scholar 

  • Islam S, Akanda AM, Prova A, Islam MT, Hossain MM (2016) Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol 6:1–10. https://doi.org/10.3389/fmicb.2015.01360

    Article  Google Scholar 

  • Jacobsen BJ, Zidack NK, Larson BJ (2004) The role of Bacillus- based biological control agents in integrated pest management systems. Phytopathology 94:1272–1275

    Article  CAS  PubMed  Google Scholar 

  • Janga MR, Raoof MA, Ulaganathan K (2017) Effective biocontrol of Fusarium wilt in castor (Ricinius communis L.) with Bacillus sp. in pot experiments. Rhizosphere 3:50–52

    Article  Google Scholar 

  • Jha CK, Annapurna K, Saraf M (2012) Isolation of rhizobacteria from Jatropha curcas and characterization of produced ACC deaminase. J Basic Microbiol 52(3):285–295

    Article  CAS  PubMed  Google Scholar 

  • Jimtha CJ, Jishma P, Sreelekha S, Chithra S, Radhakrishnan EK (2017) Antifungal properties of prodigiosin producing rhizospheric Serratia sp. Rhizosphere 30(3):105–108

    Article  Google Scholar 

  • Kejela T, Thakkar VR, Thakor P (2016) Bacillus species (BT42) isolated from Coffea arabica L. rhizosphere antagonizes Colletotrichum gloeosporioides and Fusarium oxysporum and also exhibits multiple plant growth promoting activity. BMC Microbiol 16(1):277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim YS, Balaraju K, Jeon Y (2016) Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits. J Zhejiang Univ Sci 17(12):931–940

    Article  CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radish. In: Station de pathologie végétale et phyto-bacteriologie (eds) Proceedings of the 4th conference plant pathogenic bacteria, Angers, INRA, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schiroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kothari R, Singh RP, Kothari V (2016) Application of next generation sequencing technologies in revealing plant-microbe interactions. Next Gen Seq Appl 3:e108. https://doi.org/10.4172/2469-9853.1000e108

    Article  Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29(6):591–598

    Article  Google Scholar 

  • Kumar A, Prakash A, Johri BN (2011) Bacillus as PGPR in crop ecosystem. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, pp 37–59

    Chapter  Google Scholar 

  • Kumar SS, Rao MRK, Kumar RD, Panwar S, Prasad CS (2013) Biocontrol by plant growth promoting rhizobacteria against black scurf and stem canker disease of potato caused by Rhizoctonia solani. Arch Phytopathol Plant Prot 46(4):487–502

    Article  CAS  Google Scholar 

  • Kumar H, Dubey RC, Maheshwari DK (2017) Seed-coating fenugreek with Burkholderia rhizobacteria enhances yield in field trials and can combat Fusarium wilt. Rhizosphere 30(3):92–99

    Article  Google Scholar 

  • Kurabachew H, Wydra K (2013) Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biol Control 67(1):75–83

    Article  Google Scholar 

  • Lamsal K, Kim SW, Kim YS, Lee YS (2012) Application of rhizobacteria for plant growth promotion effect and biocontrol of anthracnose caused by Colletotrichum acutatum on pepper. Mycobiology 40(4):244–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Liu X, Hao T, Chen S (2017) Colonization and maize growth promotion induced by phosphate solubilizing bacterial isolates. Int J Mol Sci 18(7):1–16

    Google Scholar 

  • Liu K, Garrett C, Fadamiro H, Kloepper JW (2016) Induction of systemic resistance in Chinese cabbage against black rot by plant growth-promoting rhizobacteria. Biol Control 99:8–13

    Article  Google Scholar 

  • Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur J Plant Pathol 119:265–278

    Article  CAS  Google Scholar 

  • Lukkani NJ, Reddy ES (2014) Evaluation of plant growth promoting attributes and biocontrol potential of native fluorescent Pseudomonas spp. against Aspergillus niger causing collar rot of ground nut. IJPAES 4(4):256–262

    CAS  Google Scholar 

  • Lupwayi NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol Biochem 30:1733–1741

    Article  CAS  Google Scholar 

  • Mahadevamurthy M, Sidappa M, Thriveni MC, Mythrashree SR, Amruthesh KN (2016) Isolation of phosphate solubilizing fungi from rhizosphere soil and its effect on seed growth parameters of different crop plants. J Appl Biol Biotechnol 4(6):22–26

    Article  CAS  Google Scholar 

  • Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with fieldgrown cucumber (Cucumis sativus L.) Microbiol Ecol 34:210–223

    Article  CAS  Google Scholar 

  • Mahdikhani M, Davoodi A (2016) Evaluation of biocontrol potential of rhizosphere antagonist bacterial strains on Fusarium wilt and plant growth in muskmelon plants. Am Eur J Sustain Agric 10(6):15–23

    Google Scholar 

  • Maji S, Chakrabartty PK (2014) Biocontrol of bacterial wilt of tomato caused by Ralstonia solanacearum by isolates of plant growth promoting rhizobacteria. Aust J Crop Sci 8(2):208–214

    Google Scholar 

  • Mandal S, Dutta P, Majumdar S (2017) Plant growth promoting and antagonistic activity of Bacillus strains isolated from rice rhizosphere. Int J Pharm Biomed Sci 8(1):408–415

    CAS  Google Scholar 

  • Mangalanayaki R, Durga R (2016) Antagonistic effect of Bacillus species in biocontrol of plant pathogen Fusarium. World J Pharm Pharm Sci 5(6):956–966

    CAS  Google Scholar 

  • Manjunatha H, Naik MK, Patil MB, Lokesha R, Vasudevan SN (2012) Isolation and characterization of native fluorescent pseudomonads and antagonistic activity against major plant pathogens. Karnataka J Agric Sci 25(3):346–349

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    Article  CAS  PubMed  Google Scholar 

  • Mesanza N, Iturritxa E, Patten CL (2016) Native rhizobacteria as biocontrol agents of Heterobasidion annosum s.s and Armillaria mellea infection of Pinus radiata. Biol Control 101:8–16

    Article  Google Scholar 

  • Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr 13(3):638–649

    Google Scholar 

  • Morgan JAW, Whipps JM (2001) Methodological approaches to the study of rhizosphere carbon flow and microbial population dynamics. In: Pinton A, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 373–409

    Google Scholar 

  • Moustaine M, Elkahkahi R, Benbouazza A, Benkirane R, Achbani EH (2017) Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth in tomato (Solanum lycopersicum L.) and characterization for direct PGP abilities in Morocco. Int J Environ Agric Biotechnol 2:590–596

    Article  Google Scholar 

  • Muleta D, Assefa F, Borjesson E, Granhall U (2013) Phosphate-solubilising rhizobacteria associated with Coffea arabica L. in natural coffee forests of southwestern Ethiopia. J Saudi Soc Agric Sci 12(1):73–84

    Google Scholar 

  • Naml A, Mahmood A, Sevilir B, Ozkır E (2017) Effect of phosphorus solubilizing bacteria on some soil properties, wheat yield and nutrient contents. Eur J Soil Sci 6(3):249–258

    Google Scholar 

  • Naureen Z, Hafeez FY, Hussain J, Al Harrasi A, Bouqellah N, Roberts MR (2015) Suppression of incidence of Rhizoctonia solani in rice by siderophore producing rhizobacterial strains based on competition for iron. ESJ 11(3):186–207

    Google Scholar 

  • Noumavo PA, Agbodjato NA, Baba-Moussa F, Adjanohoun A, Baba-Moussa L (2016) Plant growth promoting rhizobacteria: beneficial effects for healthy and sustainable agriculture. Afr J Biotechnol 15(27):1452–1463

    Article  CAS  Google Scholar 

  • Ouhaibi-Ben Abdeljalil N, Vallance J, Gerbore J, Rey P, Daami-Remadi M (2016) Bio-suppression of Sclerotinia stem rot of tomato and biostimulation of plant growth using tomato-associated rhizobacteria. J Plant Pathol Microbiol 7:331. https://doi.org/10.4172/2157-7471.1000331

    Article  CAS  Google Scholar 

  • Pascual J, Blanco S, Garcia-Lopez M, García-Salamanca A, Bursakov SA, Genilloud O (2016) Assessing bacterial diversity in the rhizosphere of Thymus zygis growing in the Sierra Nevada national park (Spain) through culture dependent and independent approaches. Plos One 11(1):e0146558. https://doi.org/10.1371/journal.pone.0146558

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel M, Sheth U, Hajela P, Joshi B, Animasaun DA (2014) Isolation and diversity analysis of Rhizobacteria from sugarcane and its biocontrol potential against Rhizoctonia solani a common plant pathogen. Int J Curr Microbiol Appl Sci 3(12):69–76

    Google Scholar 

  • Patil S, Bheemaraddi CM, Shivannavar TC, Gaddad MS (2014) Biocontrol activity of siderophore producing Bacillus subtilis CTS-G24 against wilt and dry root rot causing fungi in chickpea. J Agric Vet Sci 7(9):63–68

    Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321(1–2):341–361

    Article  CAS  Google Scholar 

  • Rahman MM, Ali ME, Khan AA, Akanda AM, Uddin MK, Hashim U, Abd Hamid SB (2012) Isolation, characterization, and identification of biological control agent for potato soft rot in Bangladesh. Sci World J. https://doi.org/10.1100/2012/723293

    Google Scholar 

  • Rais A, Shakeel M, Hafeez FY, Hassan MN (2016) Plant growth promoting rhizobacteria suppress blast disease caused by Pyricularia oryzae and increase grain yield of rice. BioControl 61(6):769–780

    Article  CAS  Google Scholar 

  • Rakh RR, Dalvi SM (2016) Antagonism of Bacillus thuringiensis NCIM2130 against Sclerotium rolfsii Sacc. a stem rot pathogen of groundnut. Int J Curr Microbiol App Sci 5(8):501–513

    Article  CAS  Google Scholar 

  • Raut V, Shaikh I, Naphade B, Prashar K, Adhapure N (2017) Plant growth promotion using microbial IAA producers in conjunction with Azolla: a novel approach. Chem Biol Technol Agric 4(1):1–11

    Article  CAS  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512

    Article  Google Scholar 

  • Ruano-Rosa D, Cazorla FM, Bonilla N, Martin-Perez R, De Vicente A, Lopez-Herrera CJ (2014) Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria. Eur J Plant Pathol 138(4):751–762

    Article  Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321(1–2):363–383

    Article  CAS  Google Scholar 

  • Salomon MV, Pinter IF, Piccoli P, Bottini R (2017) Use of plant growth-promoting rhizobacteria as biocontrol agents: induced systemic resistance against biotic stress in plants. In: Kalia V (ed) Microbial applications, vol 2. Springer, New Delhi, pp 133–152

    Chapter  Google Scholar 

  • Sang MK, Shrestha A, Kim DY, Park K, Pak CH, Kim KD (2013) Biocontrol of Phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against Phytophthora capsici. Plant Pathol J 29(2):154–167

    Article  PubMed  PubMed Central  Google Scholar 

  • Santhanam R, Luu VT, Weinhold A, Goldberg J, Youngjoo O, Baldwin IT (2015) Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci 112(36):E5013–E5020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago TR, Grabowski C, Rossato M, Romeiro RS, Mizubuti ES (2015) Biological control of eucalyptus bacterial wilt with rhizobacteria. Biol Control 80:14–22

    Article  Google Scholar 

  • Sarbadhikary SB, Mandal NC (2017) Field application of two plant growth promoting rhizobacteria with potent antifungal properties. Rhizosphere 3:170–175

    Article  Google Scholar 

  • Satyaprakash M, Nikitha T, Reddi EUB, Sadhana B, Vani SS (2017) Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Int J Curr Microbiol App Sci 6(4):2133–2144

    Article  CAS  Google Scholar 

  • Savka MA, Dessaux Y, McSpadden Gardener BB, Mondy S, Kohler PRA, de Bruijn FJ, Rossbach S (2013) The “biased rhizosphere” concept and advances in the omics era to study bacterial competitiveness and persistence in the phytosphere. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 1 and 2. Wiley, Hoboken. https://doi.org/10.1002/9781118297674.ch110

    Chapter  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAH (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  • Schrey SD, Tarkka MT (2008) Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek 94:11–19

    Article  PubMed  Google Scholar 

  • Shahzaman SH, Inam-ul-Haq M, Mukhtar TA, Naeem M (2015) Isolation, identification of antagonistic rhizobacterial strains obtained from chickpea (Cicer arietinum L.) field and their in-vitro evaluation against fungal root pathogens. Pak J Bot 47(4):1553–1558

    CAS  Google Scholar 

  • Shakeela S, Padder SA, Bhat ZA (2017) Isolation and characterization of plant growth promoting rhizobacteria associated with medicinal plant Picrorhiza Kurroa. J Pharmacogn Phytochem 6(3):157

    Google Scholar 

  • Shanmugaiah V, Nithya K, Harikrishnan H, Jayaprakashvel M, Balasubramanian N (2015) Biocontrol mechanisms of siderophores against bacterial plant pathogens. Sustainable approaches to controlling plant pathogenic bacteria. CRC Press, Boca Raton, pp 167–190

    Book  Google Scholar 

  • Showkat S, Murtaza I, Laila O, Ali A (2012) Biological control of Fusarium oxysporum and Aspergillus sp. by Pseudomonas fluorescens isolated from wheat rhizosphere soil of Kashmir. J Pharm Biol Sci 1(4):24–32

    Google Scholar 

  • Singh H, Jaiswal V, Singh S, Tiwari SP, Singh B, Katiyar D (2017) Antagonistic compounds producing plant growth promoting rhizobacteria: a tool for management of plant disease. J Adv Microbiol 3(4):1–12

    Article  Google Scholar 

  • Son JS, Sumayo M, Hwang YJ, Kim BS, Ghim SY (2014) Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper. Appl Soil Ecol 73:1–8

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):a001438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sujatha N, Ammani K (2013) Siderophore production by the isolates of fluorescent Pseudomonads. IJCRR 5(20):1–7

    Google Scholar 

  • Syamala M, Sivaji M (2017a) Functional characterization of various plant growth promoting activity of Pseudomonas fluorescens and Bacillus subtilis from Aloe vera rhizosphere. J Pharmacogn Phytochem 6(3):120–122

    Google Scholar 

  • Syamala M, Sivaji M (2017b) Isolation and functional characterization of plant growth promoting rhizobacteria against soft rot in Aloe vera (L). J Entomol Zool Stud 5(5):187–191

    Google Scholar 

  • Tahir MI, Inam-ul-Haq M, Ashfaq M, Abbasi NA, Butt H, Ghazal H (2016) Screening of effective antagonists from potato rhizosphere against bacterial wilt pathogen. Int J Biosci 8(2):228–240

    Article  CAS  Google Scholar 

  • Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson AC (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 8:1–10

    Article  Google Scholar 

  • Turatto MF, Dourado FD, Zilli JE, Botelho GR (2017) Control potential of Meloidogyne javanica and Ditylenchus spp. using fluorescent Pseudomonas and Bacillus spp. Braz J Microbiol. https://doi.org/10.1016/j.bjm.2017.03.015

  • Ulloa-Ogaz AL, Munoz-Castellanos LN, Nevarez-Moorillon GV (2015) Biocontrol of phytopathogens: antibiotic production as mechanism of control. In: The battle against microbial pathogens: basic science, technological advances and educational programes. Formatex Research Center, Spain, pp 305–309

    Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules 21(5):573

    Article  CAS  PubMed Central  Google Scholar 

  • Verma PP, Thakur S, Kaur M (2016) Antagonism of Pseudomonas putida against Dematophora necatrix a major apple plant pathogen and its potential use as a biostimulent. J Pure Appl Microbiol 10(4):2717–2727

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Vinodkumar S, Nakkeeran S, Renukadevi P, Malathi VG (2017) Biocontrol potentials of antimicrobial peptide producing Bacillus species: multifaceted antagonists for the management of stem rot of carnation caused by Sclerotinia sclerotiorum. Front Microbiol 8:446. https://doi.org/10.3389/fmicb.2017.00446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walia A, Mehta P, Chauhan A, Shirkot CK (2013) Antagonistic activity of plant growth promoting rhizobacteria isolated from tomato rhizosphere against soil borne fungal plant pathogens. Int J Agric Environ Biotechnol 6(4):571–580

    Article  Google Scholar 

  • Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23(2):175–193

    Article  CAS  Google Scholar 

  • Xiang N, Lawrence KS, Kloepper JW, Donald PA, McInroy JA (2017) Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean. PLoS One 12(7):e0181201. https://doi.org/10.1371/journal.pone.0181201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu SJ, Park DH, Kim JY, Kim BS (2016) Biological control of Gray mold and growth promotion of Tomato using Bacillus spp. isolated from soil. Trop Plant Pathol 41(3):169–176

    Article  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66(1):345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youssef MMA, Eissa MFM (2014) Biofertilizers and their role in management of plant parasitic nematodes: a review. J Biotechnol Pharm Res 5(1):1–6

    Google Scholar 

  • Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47(2):138–145

    Article  Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91(2):143–153

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Biotechnology, Govt. of India, for facilities for conducting work on microbial endobiome of medicinal plants. SK acknowledges DBT, Govt. of India, for funding of the research project on bioprospecting fungal endophytes of medicinal plants (BT/PR9538/NDB/39/425/2013). SG is thankful to the Department of Biotechnology, Govt. of India, for fellowship, DBT JRF, and SRF (DBT-JRF/2011-12/252). Coordinator Bioinformatics Centre, DBT-BIF, School of Biotechnology, is also acknowledged for providing facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaul, S., Gupta, S., Sharma, T., Dhar, M.K. (2018). Unfolding the Role of Rhizomicrobiome Toward Sustainable Agriculture. In: Giri, B., Prasad, R., Varma, A. (eds) Root Biology. Soil Biology, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-75910-4_14

Download citation

Publish with us

Policies and ethics