Skip to main content

Substances of Abuse and Hallucinogenic Activity: The Serotoninergic Pathway - Focus on Classical Hallucinogens and Entactogens

  • Chapter
  • First Online:
Hallucinations in Psychoses and Affective Disorders

Abstract

The chapter focuses on the mechanisms through which the serotoninergic system can induce hallucinations, altering sensory perceptive functions. The hallucinogenic activity of the serotoninergic receptors has been noticed since perceptual alterations induced by the consumption of some recreational drugs, such as LSD and ecstasy, were observed. Hallucinogenic effects and specific molecular mechanisms of action are discussed in this chapter. Hallucinogens and entactogens can both produce hallucinations through an increase of the serotoninergic pathway activity, which is thought to be one of the pathophysiological processes underlying positive symptoms. LSD and MDMA seem to act with a different molecular mechanism. The main molecular effect of classical hallucinogens consists of increasing 5-HT brain levels, since they act as 5-HT receptor agonists. 5-HT2A receptors, mainly localized in medial prefrontal cortex, thalamic reticular nucleus, locus coeruleus and raphe nucleus, seem to be the most important hallucinogenic target, even if it has been demonstrated that 5-HT2C receptors could also be required. Hallucinogens therefore alter ascending sensory information processed through the thalamus. This could be mediated through alterations in different systems leading to a sensorial information overload. Classical hallucinogens should be considered as potent modulators of cortex network activity through the augmented 5-HT2A agonist activity in the medial prefrontal cortex, the reduced inhibitory activity by thalamic reticular nucleus, the altered firing of raphe nucleus, and the increased activity in the locus coeruleus. Entactogens seem to act increasing intracellular and extracellular 5-HT levels by inhibiting the SERT activity, reversing its action through TAAR1 agonism, inhibiting VMAT2, and inhibiting the MAO enzymes. Entactogens also act on NET, and to a lesser extent on DAT. The hallucinogenic effect of entactogens is probably also due to a partial agonist activity on 5-HT2A activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffer A, Osmond H, Smythies J. Schizophrenia: a new approach. II. Results of a year’s research. J Ment Sci. 1954;100:29–45.

    Article  PubMed  CAS  Google Scholar 

  2. Hollister LE. Drug-induced psychoses and schizophrenic reactions, a critical comparison. Ann N Y Acad Sci. 1962;96:80–8.

    Article  PubMed  CAS  Google Scholar 

  3. Hollister LE. Chemical psychoses: LSD and related drugs. Springfield, IL: Thomas; 1968.

    Google Scholar 

  4. Glennon RA. Classical drugs: an introductory overview. In: Lin GC, Glennon RA, editors. Hallucinogens: an update. Rockville, MD: National Institute on Drug Abuse; 1994.

    Google Scholar 

  5. Nichols DE, Glennon RA. Medicinal chemistry and structure-activity relationships of hallucinogens. In: Jacobs BL, editor. Hallucinogens: neurochemical, behavioral, and clinical perspectives. New York: Raven Press; 1984. p. 95–142.

    Google Scholar 

  6. Ludwig AM. Altered states of consciousness. Arch Gen Psychiatry. 1966;15:225–34.

    Article  PubMed  CAS  Google Scholar 

  7. Preller KH, Vollenweider FX. Phenomenology , structure, and dynamic of psychedelic states. Curr Top Behav Neurosci. 2018;36:221–56.

    Article  PubMed  Google Scholar 

  8. Díaz JL. Sacred plants and visionary consciousness. Phenomenol Cogn Sci. 2010;9(2):159–70.

    Article  Google Scholar 

  9. Schmid Y, Enzler F, Gasser P, et al. Acute effects of lysergic acid diethylamide in healthy subjects. Biol Psychiatry. 2015;78:544–53.

    Article  PubMed  CAS  Google Scholar 

  10. Studerus E, Kometer M, Hasler F, et al. Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J Psychopharmacol. 2011;25:1434–52.

    Article  PubMed  CAS  Google Scholar 

  11. Rolland B, Jardri R, Amad A, et al. Pharmacology of hallucinations: several mechanisms for one single symptom? BioMed Res Int. 2014;2014, Article ID 307106, 9 p.

    Google Scholar 

  12. Campbell RJ. Psychiatric dictionary. 6th ed. New York: Oxford University Press; 1989.

    Google Scholar 

  13. Anden NE, Corrodi H, Fuxe K, Hokfelt T. Evidence for a central 5-hydroxytryptamine receptor stimulation by lysergic acid diethylamide. Br J Pharmacol. 1968;34:1–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Anden NE, Corrodi H, Fuxe K. Hallucinogenic drugs of the indolcalkylamine type and central monoamine neurons. J Pharmacol Exp Ther. 1971;179:236–49.

    PubMed  CAS  Google Scholar 

  15. Randic M, Padjen A. Effect of N,N-dimethyltryptamine and D-lysergic acid diethylamide on the release of 5-hydroxyindoles in rat forebrain. Nature. 1971;230:532–3.

    Article  PubMed  CAS  Google Scholar 

  16. Fuxe K, Holmstedt B, Jonsson G. Effects of 5-methoxy-N,N-dimethyltrypstamine on central monoamine neurons. Eur J Pharmacol. 1972;19:25–34.

    Article  PubMed  CAS  Google Scholar 

  17. Glennon RA, Young R, Rosecrans JA. Antagonism of the stimulus effects of the hallucinogen DOM and the purported serotonin agonist quipazine by 5-HT2 antagonists. Eur J Pharmacol. 1983;91:189–92.

    Article  PubMed  CAS  Google Scholar 

  18. Glennon RA, Titeler M, McKenney JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci. 1984;35:2505–11.

    Article  PubMed  CAS  Google Scholar 

  19. Colpaert FC, Janssen PA. A characterization of LSD-antagonist effects of pirenperone in the rat. Neuropharmacology. 1983;22:1001–5.

    Article  PubMed  CAS  Google Scholar 

  20. Colpaert FC, Niemegeers CJ, Janssen PA. A drug discrimination analysis of lysergic acid diethylamide (LSD): in vivo agonist and antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, an LSD-antagonist. J Pharmacol Exp Ther. 1982;221:206–14.

    PubMed  CAS  Google Scholar 

  21. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Babler A, et al. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport. 1998;9:3897–902.

    Article  PubMed  CAS  Google Scholar 

  22. Nichols D. Hallucinogens. Pharmacol Ther. 2004;101:131–81.

    Article  PubMed  CAS  Google Scholar 

  23. Gonzalez-Maeso J, Sealfon SC. Psychedelics and schizophrenia. Trends Neurosci. 2009;32:225–32.

    Article  PubMed  CAS  Google Scholar 

  24. Vollenweider FX, Kometer M. The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci. 2010;11(9):642–51.

    Article  PubMed  CAS  Google Scholar 

  25. Aghajanian GK, Marek GJ. Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropsychopharmacology. 1997;36:589–99.

    CAS  Google Scholar 

  26. Aghajanian GK, Marek GJ. Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res. 1999;825:161–71.

    Article  PubMed  CAS  Google Scholar 

  27. Marek GJ, Wright RA, Gewirtz JC, et al. A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in the rat neocortex. Neuroscience. 2001;105:379–92.

    Article  PubMed  CAS  Google Scholar 

  28. Beique JC, Imad M, Mladenovic L, et al. Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci U S A. 2007;104:9870–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Puig MV, Celada P, az-Mataix L, et al. In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors: relationship to thalamocortical afferents. Cereb Cortex. 2003;13:870–82.

    Article  PubMed  Google Scholar 

  30. Gonzalez-Maeso J, et al. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron. 2007;53:439–52.

    Article  PubMed  CAS  Google Scholar 

  31. Marek GJ, Wright RA, Schoepp DD, et al. Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex. J Pharmacol Exp Ther. 2000;292:76–87.

    PubMed  CAS  Google Scholar 

  32. Moorman JM, Leslie RA. p-Chloroamphetamine induces c-fos in rat brain: a study of serotonin 2A/2C receptor function. Neuroscience. 1996;72:129–39.

    Article  PubMed  CAS  Google Scholar 

  33. Scruggs JL, Patel S, Bubser M, et al. DOI-induced activation of the cortex: dependence on 5-HT2A heteroceptors on thalamocortical glutamatergic neurons. J Neurosci. 2000;20:8846–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Pazos A, Probst A, Palacios JM. Serotonin receptors in the human brain: IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience. 1987;21:123–39.

    Article  PubMed  CAS  Google Scholar 

  35. Wong DF, Lever JR, Hartig PR, et al. Localization of serotonin 5-HT2 receptors in living human brain by positron emission tomography using N1-([11C]-methyl)-2-BR-LSD. Synapse. 1987;1:393–8.

    Article  PubMed  CAS  Google Scholar 

  36. Jakab RL, Goldman-Rakic PS. 5-HT2A serotonin in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci U S A. 1998;95:735–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Xia Z, Gray JA, Compton-Toth BA, et al. A direct interaction of PSD-95 with 5-HT2A serotonin receptors regulates receptor trafficking and signal transduction. J Biol Chem. 2003;278:21901–8.

    Article  PubMed  CAS  Google Scholar 

  38. Celada P, Puig MV, Casanovas JM, et al. Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. J Neurosci. 2001;21:9917–29.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Vazquez-Borsetti P, Cortes R, Artigas F. Pyramidal neurons in rat prefrontal cortex projecting to ventral tegmental area and dorsal raphe nucleus express 5-HT2A receptors. Cereb Cortex. 2009;19:1678–86.

    Article  PubMed  Google Scholar 

  40. Vollenweider FX, Vontobel P, Hell D, Leenders KL. 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man—a PET study with [11C] raclopride. Neuropsychopharmacology. 1999;20:424–33.

    Article  PubMed  CAS  Google Scholar 

  41. Moreno JL, Holloway T, Albizu L, et al. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptors agonists. Neurosci Lett. 2011;493:76–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Crick F. Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci U S A. 1984;81:4586–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Pinault D. The thalamic reticular nucleus: structure, function and concept. Brain Res Brain Res Rev. 2004;46:1–31.

    Article  PubMed  Google Scholar 

  44. Yingling CD, Skinner JE. Selective regulation of thalamic sensory relay nuclei by nucleus reticularis thalami. Electroencephalogr Clin Neurophysiol. 1976;41:476–82.

    Article  PubMed  CAS  Google Scholar 

  45. Guillery RW, Sherman SM. Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron. 2002;33:163–75.

    Article  PubMed  CAS  Google Scholar 

  46. Guillery RW, Feig SL, Lozsadi DA. Paying attention to the thalamic reticular nucleus. Trends Neurosci. 1998;21:28–32.

    Article  PubMed  CAS  Google Scholar 

  47. Golomb D, Ahissar E, Kleinfeld D. Coding of stimulus frequency by latency in thalamic networks through the interplay of GABAB-mediated feedback and stimulus shape. J Neurophysiol. 2006;95:1735–50.

    Article  PubMed  CAS  Google Scholar 

  48. McAlonan K, Cavanaugh J, Wurtz RH. Attentional modulation of thalamic reticular neurons. J Neurosci. 2006;26:4444–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. McAlonan K, Cavanaugh J, Wurtz RH. Guarding the gateway to cortex with attention in visual thalamus. Nature. 2008;456:391–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Yu XJ, Xu XX, He S, et al. Change detection by thalamic reticular neurons. Nat Neurosci. 2009;12:1165–70.

    Article  PubMed  CAS  Google Scholar 

  51. Vollenweider FX, Geyer MA. A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res Bull. 2001;56:495–507.

    Article  PubMed  CAS  Google Scholar 

  52. Nestler EJ, Alreja M, Aghajanian GK. Molecular control of locus coeruleus neurotransmission. Biol Psychiatry. 1999;46:1131–9.

    Article  PubMed  CAS  Google Scholar 

  53. Rasmussen K, Aghajanian GK. Effect of hallucinogens on spontaneous and sensory-evoked locus coeruleus unit activity in the rat: reversal by selective 5-HT2 antagonists. Brain Res. 1986;385:395–400.

    Article  PubMed  CAS  Google Scholar 

  54. Chiang C, Aston-Jones G. A 5-hydroxytryptamine 2 agonist augments γ-aminobutyric acid and excitatory amino acid inputs to noradrenergic locus coeruleus neurons. Neuroscience. 1993;54:409–20.

    Article  PubMed  CAS  Google Scholar 

  55. Rasmussen K, Glennon RA, Aghajanian GK. Phenethyl-amine hallucinogens in the locus coeruleus: potency of action correlates with rank order of 5-HT2 binding affinity. Eur J Pharmacol. 1986;132:79–82.

    Article  PubMed  CAS  Google Scholar 

  56. Marek GJ, Aghajanian GK. Indoleamine and the phenethylamine hallucinogens: mechanisms of psychotomimetic action. Drug Alcohol Depend. 1998;51:189–98.

    Article  PubMed  CAS  Google Scholar 

  57. Araneda R, Andrade R. 5-Hydroxytryptamine 2 and 5-hydroxy-tryptamine 1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience. 1991;40:399–412.

    Article  PubMed  CAS  Google Scholar 

  58. Behrendt RP. Hallucinations: synchronization of thalamocortical gamma oscillations underconstrained by sensory input. Conscious Cogn. 2003;12:413–51.

    Article  PubMed  CAS  Google Scholar 

  59. Tilakaratne N, Friedman E. Genomic responses to 5-HT1a or 5-HT2a2c receptor activation is differentially regulated in four regions of rat brain. Eur J Pharmacol. 1996;307:211–7.

    Article  PubMed  CAS  Google Scholar 

  60. Nichols CD, Sanders-Bush E. A single dose of lysergic acid diethylamide influences gene expression patterns within the mammalian brain. Neuropsychopharmacology. 2002;26:634–42.

    Article  PubMed  CAS  Google Scholar 

  61. Leslie RA, Moorman JM, Coulson A, et al. Serotonin 2/1 C receptor activation causes a localized expression of the immediate-early gene c-fos in rat brain: evidence for involvement of dorsal raphe nucleus projection fibers. Neuroscience. 1993;53:457–63.

    Article  PubMed  CAS  Google Scholar 

  62. Nichols CD, Garcia EE, Sanders-Bush E. Dynamic changes in prefrontal cortex gene expression following lysergic acid diethylamide administration. Mol Brain Res. 2003;111:182–8.

    Article  PubMed  CAS  Google Scholar 

  63. Pazos A, Hoyer D, Palacios JM. The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur J Pharmacol. 1984;106:539–46.

    Article  PubMed  CAS  Google Scholar 

  64. Titeler M, Lyon RA, Glennon RA. Radioligand binding evidence implicates the brain 5-HT 2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology. 1988;94:213–6.

    Article  PubMed  CAS  Google Scholar 

  65. Parker MA, Marona-Lewicka D, Lucaites VL, et al. A novel (benzodifuranyl)aminoalkane with extremely potent activity at the 5-HT2A receptor. J Med Chem. 1998;41:5148–9.

    Article  PubMed  CAS  Google Scholar 

  66. Chambers JJ, Kurrasch-Orbaugh DM, Parker MA, et al. Enantiospecific synthesis and pharmacological evaluation of a series of super-potent, conformationally restricted 5-HT(2A/2C) receptor agonists. J Med Chem. 2001;44:1003–10.

    Article  PubMed  CAS  Google Scholar 

  67. Burris KD, Breeding M, Sanders-Bush E. (+) Lysergic acid diethylamide, but not its nonhallucinogenic congeners, is a potent serotonin 5HT1C receptor agonist. J Pharmacol Exp Ther. 1991;258:891–6.

    PubMed  CAS  Google Scholar 

  68. Fiorella D, Rabin RA, Winter JC. Role of 5-HT 2A and 5-HT 2C receptors in the stimulus effects of hallucinogenic drugs II: reassessment of LSD false positives. Psychopharmacology. 1995;121:357–63.

    Article  PubMed  CAS  Google Scholar 

  69. Sanders-Bush E. Neurochemical evidence that hallucinogenic drugs are 5-HT1C receptor agonists: what next? NIDA Res Monogr. 1994;146:203–13.

    PubMed  CAS  Google Scholar 

  70. Glennon RA, Hauck AE. Mechanistic studies on DOM as a discriminative stimulus. Pharmacol Biochem Behav. 1985;23:937–41.

    Article  PubMed  CAS  Google Scholar 

  71. Glennon RA. Do hallucinogens act as 5-HT2 agonists or antagonists? Neuropsychopharmacology. 1990;56:509–17.

    Google Scholar 

  72. Nichols DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoactive Drugs. 1986;18:305–13.

    Article  PubMed  CAS  Google Scholar 

  73. Hysek CM, Schmid Y, Simmler LD, et al. MDMA enhances emotional empathy and prosocial behavior. Soc Cogn Affect Neurosci. 2014;9:1645–52.

    Article  PubMed  Google Scholar 

  74. Carvalho M, Carmo H, Costa VM, et al. Toxicity of amphetamines: an update. Arch Toxicol. 2012;86:1167–231.

    Article  PubMed  CAS  Google Scholar 

  75. Kleven MS, Seiden LS. Methamphetamine-induced neurotoxicity: structure activity relationships. Ann N Y Acad Sci. 1992;654:292–301.

    Article  PubMed  CAS  Google Scholar 

  76. Freudenmann RW, Öxler F, Bernschneider-Reif S. The origin of MDMA (ecstasy) revisited: the true story reconstructed from the original documents. Addiction. 2006;101:1241–5.

    Article  PubMed  Google Scholar 

  77. Rugani F, Bacciardi S, Rovai L, et al. Symptomatological features of patients with and without ecstasy use during their first psychotic episode. Int J Environ Res Public Health. 2012;9:2283–92.

    Article  PubMed  PubMed Central  Google Scholar 

  78. United Nations Office on Drugs and Crime UNODC World Drug Report. United Nations publication, Sales No. E16XI7. 2016.

    Google Scholar 

  79. Kalant H. The pharmacology and toxicology of “ecstasy” (MDMA) and related drugs. Can Med Assoc J. 2001;165:917–28.

    CAS  Google Scholar 

  80. Parrott AC. Human psychopharmacology of ecstasy (MDMA): a review of 15 years of empirical research. Hum Psychopharmacol Clin Exp. 2001;16:557–77.

    Article  CAS  Google Scholar 

  81. Schifano F. Chronic atypical psychosis associated with MDMA. Lancet. 1991;338:1335.

    Article  PubMed  CAS  Google Scholar 

  82. Cohen RS, Cocores J. Neuropsychiatric manifestations following the use of 3,4-methylenedioxymethamphetamine (MDMA; “ecstasy”). Prog Neuro-Psychopharmacol Biol Psychiatry. 1997;21:727–34.

    Article  CAS  Google Scholar 

  83. Keenan E, Gervin M, Dorman A, O'Connor JJ. Psychosis and recreational use of MDMA (“Ecstasy”). Ir J Psychol Med. 1993;10:162–3.

    Article  Google Scholar 

  84. Boné PI, Ramos GP, Villalba YP, et al. Persisting and late onset psychotic disorder due to consumption of ecstasy (MDMA). Actas Esp Psiquiatr. 1999;28:61–5.

    Google Scholar 

  85. Landabaso MA, Iraurgi I, Jiménez-Lerma JM, et al. Ecstasy-induced psychotic disorder: six-month follow-up study. Eur Addict Res. 2002;8:133–40.

    Article  PubMed  CAS  Google Scholar 

  86. Potash MN, Gordon KA, Conrad KL. Persistent psychosis and medical complications after a single ingestion of MDMA “Ecstasy”: a case report and review of the literature. Psychiatry. 2009;6:40.

    PubMed  PubMed Central  Google Scholar 

  87. Brown C, Osterloh J. Multiple severe complications from recreational ingestion of MDMA ('Ecstasy'). JAMA. 1987;258:780–1.

    Article  PubMed  CAS  Google Scholar 

  88. Creighton FJ, Black DL, Hyde CE. 'Ecstasy' psychosis and flashbacks. Br J Psychiatry. 1991;159:713–5.

    Article  PubMed  CAS  Google Scholar 

  89. Vollenweider FX. Brain mechanisms of hallucinogens and entactogens. Dialogues Clin Neurosci. 2001;3:265–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Davison D, Parrott AC. Ecstasy (MDMA) in recreational users: self-reported psychological and physiological effects. Hum Psychopharmacol Clin Exp. 1997;12:221–6.

    Article  CAS  Google Scholar 

  91. Oliveri M, Calvo G. Increased visual cortical excitability in ecstasy users: a transcranial magnetic stimulation study. J Neurol Neurosurg Psychiatry. 2003;74:1136–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Hanck L, Schellekens AF. Hallucinogen persisting perception disorder after ecstasy use. Ned Tijdschr Geneeskd. 2012;157:A5649.

    Google Scholar 

  93. Robbins TW, Everitt BJ. Drug addiction: bad habits add up. Nature. 1999;398:567–70.

    Article  PubMed  CAS  Google Scholar 

  94. Parrott AC, Sisk E, Turner JJD. Psychobiological problems in heavy ‘ecstasy’(MDMA) polydrug users. Drug Alcohol Depend. 2000;60:105–10.

    PubMed  CAS  Google Scholar 

  95. Green AR, Cross AJ, Goodwin GM. Review of the pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA or “Ecstasy”). Psychopharmacology. 1995;119:247–60.

    Article  PubMed  CAS  Google Scholar 

  96. Koch S, Galloway MP. MDMA induced dopamine release in vivo: role of endogenous serotonin. J Neural Transm. 1997;104:135–46.

    Article  PubMed  CAS  Google Scholar 

  97. O'Loinsigh ED, Boland G, Kelly JP, et al. Behavioural, hyperthermic and neurotoxic effects of 3,4-methylenedioxymethamphetamine analogues in the Wistar rat. Prog Neuro-Psychopharmacol Biol Psychiatry. 2001;25:621–38.

    Article  CAS  Google Scholar 

  98. Mechan AO, Esteban B, O'Shea E, et al. The pharmacology of the acute hyperthermic response that follows administration of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) to rats. Br J Pharmacol. 2002;135:170–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Verrico CD, Miller GM, Madras BK. MDMA (Ecstasy) and human dopamine, norepinephrine, and serotonin transporters: implications for MDMA-induced neurotoxicity and treatment. Psychopharmacology. 2007;189:489–503.

    Article  PubMed  CAS  Google Scholar 

  100. Rothman RB, Baumann MH. Monoamine transporters and psychostimulant drugs. Eur J Pharmacol. 2003;479:23–40.

    Article  PubMed  CAS  Google Scholar 

  101. Clauwaert KM, Van Bocxlaer JF, Els A, et al. Determination of the designer drugs 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxyethylamphetamine, and 3,4-methylenedioxyamphetamine with HPLC and fluorescence detection in whole blood, serum, vitreous humor, and urine. Clin Chem. 2000;46:1968–77.

    PubMed  CAS  Google Scholar 

  102. Green AR, Mechan AO, Elliott JM, et al. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev. 2003;55:463–508.

    Article  PubMed  CAS  Google Scholar 

  103. de Win MM, Jager G, Booij J, Reneman L, et al. Sustained effects of ecstasy on the human brain: a prospective neuroimaging study in novel users. Brain. 2008;131:2936–45.

    Article  PubMed  Google Scholar 

  104. Parrott AC. MDMA and 5-HT neurotoxicity: the empirical evidence for its adverse effects in humans—no need for translation. Br J Pharmacol. 2012;166:1518–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Meyer JS. 3,4-Methylenedioxymethamphetamine (MDMA): current perspectives. Subst Abuse Rehabil. 2013;4:83–99.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Berger UV, Gu XF, Azmitia EC. The substituted amphetamines 3, 4-methylenedioxymethamphetamine, methamphetamine, p-chloroamphetamine and fenfluramine induce 5-hydroxytryptamine release via a common mechanism blocked by fluoxetine and cocaine. Eur J Pharmacol. 1992;215:153–60.

    Article  PubMed  CAS  Google Scholar 

  107. Mørland J. Toxicity of drug abuse—amphetamine designer drugs (ecstasy): mental effects and consequences of single dose use. Toxicol Lett. 2000;112:147–52.

    Article  PubMed  Google Scholar 

  108. Gudelsky GA, Nash JF. Carrier-mediated release of serotonin by 3,4-methylenedioxymethamphetamine: implications for serotonin-dopamine interactions. J Neurochem. 1996;66:243–9.

    Article  PubMed  CAS  Google Scholar 

  109. Tao R, Shokry IM, Callanan JJ, et al. Mechanisms and environmental factors underlying the intensification of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy)-induced serotonin syndrome in rats. Psychopharmacology. 2015;232:1245–60.

    Article  PubMed  CAS  Google Scholar 

  110. Hagino Y, Takamatsu Y, Yamamoto H, et al. Effects of MDMA on extracellular dopamine and serotonin levels in mice lacking dopamine and/or serotonin transporters. Curr Neuropharmacol. 2011;9:91–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Liechti ME, Baumann C, Gamm A, Vollenweider FX. Acute psychological effects of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) are attenuated by the serotonin uptake inhibitor citalopram. Neuropsychopharmacology. 2000a;22:513–21.

    Article  PubMed  CAS  Google Scholar 

  112. Liechti ME, Saur MR, Gamma A, et al. Psychological and physiological effects of MDMA (“Ecstasy”) after pretreatment with the 5-HT2 antagonist ketanserin in healthy humans. Neuropsychopharmacology. 2000b;23:396–404.

    Article  PubMed  CAS  Google Scholar 

  113. Egan CT, Herrick-Davis K, Miller K, Glennon RA, Teitler M. Agonist activity of LSD and lisuride at cloned 5HT2A and 5HT2C receptors. Psychopharmacology. 1998;136:409–14.

    Article  PubMed  CAS  Google Scholar 

  114. Kometer M, Schmidt A, Jäncke L, et al. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. J Neurosci. 2013;33:10544–51.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  115. Sadzot B, Baraban JM, Glennon RA, et al. Hallucinogenic drug interactions at human brain 5-HT 2 receptors: implications for treating LSD-induced hallucinogenesis. Psychopharmacology. 1989;98:495–9.

    Article  PubMed  CAS  Google Scholar 

  116. Mlinar B, Mascalchi S, Morini R, et al. MDMA induces EPSP-spike potentiation in rat ventral hippocampus in vitro via serotonin and noradrenaline release and coactivation of 5-HT4 and β1 receptors. Neuropsychopharmacology. 2008;33:1464–75.

    Article  PubMed  CAS  Google Scholar 

  117. Oleskevich S, Descarries L. Quantified distribution of the serotonin innervation in adult rat hippocampus. Neuroscience. 1990;34:19–33.

    Article  PubMed  CAS  Google Scholar 

  118. Oleskevich S, Descarries L, Lacaille JC. Quantified distribution of the noradrenaline innervation in the hippocampus of adult rat. J Neurosci. 1989;9:3803–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  119. Hensler JG. Serotonergic modulation of the limbic system. Neurosci Biobehav Rev. 2006;30:203–14.

    Article  PubMed  CAS  Google Scholar 

  120. Gamma A, Buck A, Berthold T, et al. 3,4-Methylenedioxymethamphetamine (MDMA) modulates cortical and limbic brain activity as measured by [H215O]-PET in healthy humans. Neuropsychopharmacology. 2000;23:388–95.

    Article  PubMed  CAS  Google Scholar 

  121. Litjens RP, Brunt TM, Alderliefste GJ, et al. Hallucinogen persisting perception disorder and the serotonergic system: a comprehensive review including new MDMA-related clinical cases. Eur Neuropsychopharmacol. 2014;24:1309–23.

    Article  PubMed  CAS  Google Scholar 

  122. Greene SL, Dargan PI, O’Connor N, et al. Multiple toxicity from 3, 4-methylenedioxymethamphetamine (“ecstasy”). Am J Emerg Med. 2003;21:121–4.

    Article  PubMed  Google Scholar 

  123. Segura M, Farré M, Pichini S, et al. Contribution of cytochrome P450 2D6 to 3,4-methylenedioxymethamphetamine disposition in humans. Clin Pharmacokinet. 2005;44:649–60.

    Article  PubMed  CAS  Google Scholar 

  124. Roiser JP, Cook LJ, Cooper JD, et al. Association of a functional polymorphism in the serotonin transporter gene with abnormal emotional processing in ecstasy users. Am J Psychiatr. 2005;162:609–12.

    Article  PubMed  Google Scholar 

  125. Roiser JP, Rogers RD, Cook LJ, et al. The effect of polymorphism at the serotonin transporter gene on decision-making, memory and executive function in ecstasy users and controls. Psychopharmacology. 2006;188:213–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This chapter was supported by a grant from the AIFA (Proposal AIFA-2016-02364852). pathway involved in substance-induced hallucinations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Brambilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lazzaretti, M., Mandolini, G.M., Altamura, A.C., Brambilla, P. (2018). Substances of Abuse and Hallucinogenic Activity: The Serotoninergic Pathway - Focus on Classical Hallucinogens and Entactogens. In: Brambilla, P., Mauri, M., Altamura, A. (eds) Hallucinations in Psychoses and Affective Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-75124-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75124-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75123-8

  • Online ISBN: 978-3-319-75124-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics