Skip to main content

Current Trends in Pteridophyte Extracts: From Plant to Nanoparticles

  • Chapter
  • First Online:
Book cover Current Advances in Fern Research

Abstract

The therapeutic use of pteridophytes has had a spectacular evolution, starting from their use in the traditional medicine of different peoples to the current stage in which pteridophytes are used in the form of nanoparticles. Phytosynthesis of Ag nanoparticles (AgNPs) in ethanol extracts from spores of Athyrium filix-femina was demonstrated through SEM and EDS analyses. The sizes of AgNPs varied between 10 nm and 94 nm. In the meristematic tips of Allium cepa, mitosis was inhibited by ethanol extracts from spores. The more pronounced mitodepressive effect associated with the presence of C-mitoses was induced by spore extracts supplemented with AgNPs, which demonstrate potential antitumour effects. Depending on the absence or the presence of AgNPs, the experimental samples were defined by distinct chromosomal aberrations, as follows: sticky chromosomes and binuclear cells and C-mitoses and the variation in the chromosome number, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham G, Kaushik GK (2015) Antimicrobial activity and identification of potential antimicrobial compounds from aquatic pteridophyte, Azolla microphylla Kaulf. Indian J Exp Biol 53:232–235

    CAS  PubMed  Google Scholar 

  • Aitken RJ, Chaundhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306

    Article  CAS  Google Scholar 

  • Akeroyd J, Synge H (1992) Higher plant diversity. In: Groombridge B (ed) Global biodiversity status of the Earth's living resources, 1st edn. Springer, Dordrecht, pp 64–87

    Google Scholar 

  • Alcaraz LE, Blanco SE, Puig ON, Tomas F, Ferretti FH (2000) Antibacterial activity of flavonoids against methicillin-resistant Staphylococcus aureus strains. J Theor Biol 205:231–240

    Article  CAS  PubMed  Google Scholar 

  • Alihosseini F, Azarmi S, Ghaffari S, Haghighat S, Sorkhabadi RSM (2016) Synergic antibacterial effect of curcumin with ampicillin; free drug solutions in comparison with SLN dispersions. Adv Pharm Bull 6(3):461–465

    Article  PubMed  PubMed Central  Google Scholar 

  • Allafchian AR, Mirahmadi-Zare SZ, Jalali SHAH, Hashemi SS, Wahabi MR (2016) Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J Nanostruct Chem 6(2):129–135

    Article  CAS  Google Scholar 

  • Amoroso VB, Antes DE, Buenavista DP, Coritico FP (2014) Antimicrobial, antipyretic, and anti-inflammatory activities of selected Philippine medicinal pteridophytes. Asian J Biodivers 5:18–40

    Article  Google Scholar 

  • Auffan M, Rose J, Wiesner MR, Bottero J (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133. https://doi.org/10.1016/j.envpol.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  • Bahadori MB, Kordi FM, Ahmadi AA, Bahadori S, Valizadeh H (2015) Antibacterial evaluation and preliminary phytochemical screening of selected ferns from Iran. Res J Pharmacogn 2(2):53–59

    CAS  Google Scholar 

  • Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5(2):244–249

    Article  CAS  PubMed  Google Scholar 

  • Balaji DS, Basavaraja RD, Mahesh DB, Belawadi KP, Abbaraju V (2008) Biosynthesis and stabilization of Au and Ag alloy nanoparticles by fungus Fusarium semitectum. Sci Technol Adv Mater 9:035012–035017

    Article  CAS  Google Scholar 

  • Baskaran X, Vigila AVG, Parimelazhagan T, Muralidhara-Rao D, Zhang S (2016) Biosynthesis, characterization, and evaluation of bioactivities of leaf extact-mediated biocompatible silver nanoparticles from an early tracheophyte, Pteris tripartita Sw. Int J Nanomedicine 11:5789–5806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhardt ES, Benjamin PC, Hochella MF, Cardinale BJ, Nisbet RM, Richardson CJ, Yin L (2010) An ecological perspective on nanomaterial impacts in the environment. J Environ Qual 39:1–12

    Article  CAS  Google Scholar 

  • Bhor G, Maskare S, Hinge S, Singh L, Nalawade A (2014) Synthesis of silver nanoparticles by using leaflet extract of Nephrolepis exaltata L and evaluation of antibacterial activity against human and plant pathogenic bacteria. Asian J Pharm Technol Innov 2(7), p. 6.

    Google Scholar 

  • Blajeski AL, Phan VA, Kottke TJ, Kaufmann SH (2002) G1 and G2 cell-cycle arrest following microtubule depolymerization in human breast cancer cells. J Clin Invest 110(1):91–99. https://doi.org/10.1172/JCI13275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braga LC, Leite AA, Xavier KG, Takahashi JA, Bemquerer MP, Chartone-Souza E, Nascimento AM (2005) Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can J Microbiol 51(7):541–547

    Article  CAS  PubMed  Google Scholar 

  • Britto JD, Gracelin DHS, Kumar PBJR (2014) Antibacterial activity of silver nanoparticles synthesis from a few medicinal ferns. Bull Environ Pharm Life Sci 3(3):224–227

    Google Scholar 

  • Bunnag D, Dhorranintra B, Limsuvan S (1989) Ferns and their allergenic importance: skin and nasal provocation tests to fern spore extract in allergic and non-allergic patients. Ann Allergy 62(6):554–558

    CAS  PubMed  Google Scholar 

  • Campos JMS, Davide LC, Soares GLG, Viccini LF (2008) Mutagenic effects due to allelopathic action of fern (Gleicheniaceae) extracts. Allelopath J 22(1):143–151

    Google Scholar 

  • Cao J, Xia X, Chen X, Xiao J, Wang Q (2013) Characterization of flavonoids from Dryopteris erythrosora and evaluation of their antioxidant, anticancer and acetylcholinesterase inhibition activities. Food Chem Toxicol 51:242–250

    Article  CAS  PubMed  Google Scholar 

  • Cassimeris L, Pryor NK, Salmon ED (1988) Real-time observations of microtubules dynamic instability in living cells. J Cell Biol 107:2223–2231

    Article  CAS  PubMed  Google Scholar 

  • Chai TT, Panirchellvum E, Ong H-C, Wong F-C (2012) Phenolic contents and antioxidant properties of Stenochlaena palustris, an edible medicinal fern. Bot Stud 53:439–446

    CAS  Google Scholar 

  • Chai TT, Yeoh LY, Ismail NIM, Ong HC, Wong FC (2015) Cytotoxicity and antiglucosidase potential of six selected edible and medicinal ferns. Acta Pol Pharm Drug Res 72(2):297–401

    Google Scholar 

  • Chang HC, Huang G-J, Agrawal D, Kuo C-L, Wu C-R, Tsay H-S (2007) Antioxidant activities and polyphenol contents of six folk medicinal ferns used as “Gusuibu”. Bot Stud 48:397–406

    CAS  Google Scholar 

  • Chew FT, Lim SH, Shang HS, Siti Dahlia M, Goh DYT, Lee BW (2000) Evaluation of the allergenicity of tropical pollen and airborne spores in Singapore. Allergy 55:340–347

    Article  CAS  PubMed  Google Scholar 

  • Chrislyn G, Prachi S, Sangeeta S, Priya S (2016) Green synthesis and characterization of silver nanoparticles. Int J Adv Res 4(8):1563–1568. https://doi.org/10.21474/IJAR01/1362

    Article  Google Scholar 

  • Croteau MN, Misra SK, Lioma S, Valsami-Jones E (2014) Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and diet borne exposures. Environ Sci Technol 48:10929–10937. https://doi.org/10.1021/es5018703

    Article  CAS  PubMed  Google Scholar 

  • Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    Article  CAS  PubMed  Google Scholar 

  • Dalli AK, Saha G, Chakraborty U (2007) Characterization of antimicrobial compounds from a common fern, Pteris biaurita. Indian J Exp Biol 45(3):285–290

    CAS  PubMed  Google Scholar 

  • Deliu I, Bejan C, Vișoiu E, Soare LC (2013) The antimicrobial activity of some extracts of fern gametophytes. Curr Trends Nat Sci 2(2):10–13

    Google Scholar 

  • Devi S, Yasmeen, Singh J, Shankar R (1989) Patch testing animals to allergenic fern spores. J Toxicol Cutan Ocul Toxicol 8(2):167–172

    Article  Google Scholar 

  • Eder M, Mehnert W (1998) Bedeutung planzlicher begleitstoffe in extrackten. Pharmazie 53:285–293

    CAS  PubMed  Google Scholar 

  • Eneji AE, Inanaga S, Muranaka S, Li J, Hattori T, Tsuji W (2005) Effect of calcium silicate on growth and dry matter yield of Chloris gayana and Sorghum sudanense under two soil water regimes. Grass Forage Sci 60:393–398

    Article  CAS  Google Scholar 

  • European Commission Scientific Committee on Emerging and Newly Identified Health Risks (2006) Modified opinion (after public consultation) on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies, European Commission, Bruxelles, Belgium, p 3–14

    Google Scholar 

  • Fernández OL, Mazzeo DEC, Marin-Morales MA (2007) Mechanism of micronuclei formation in polyploidization cells of Allium cepa exposed to trifluralin herbicide. Pestic Biochem Physiol 88:252–259

    Article  CAS  Google Scholar 

  • Fiskesjö G (1985) The Allium test as standard in environmental monitoring. Hereditas 102:99–112

    Article  PubMed  Google Scholar 

  • Fiskesjö G (1993) Allium test I: a 2-3 day plant test for toxicity assessment by measuring the mean root growth of anions (Allium cepa L.) Environ Toxicol 8(4):461–470. https://doi.org/10.1002/tox2530080410

    Google Scholar 

  • Fun S, Tian F, Li J, Hutchins W, Chen H, Yang F, Yuan X, Cui Z, Yang C-H, He C (2017) Identification of phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via the type III secretion system. Mol Plant Pathol 18(4):555–568

    Article  CAS  Google Scholar 

  • Gartner C, Etahl W, Sies H (1997) Lycopene is more bioavailable from tomato paste than from fresh tomatoes. Am J Clin Nutr 66:116–122

    Article  CAS  PubMed  Google Scholar 

  • Geethalakshmi R, Sarada DVL (2010) Synthesis of plant mediated silver nanoparticles using Trianthema decandra extract and evaluation of their anti-microbial activities. Int J Eng Sci Technol 2(5):970–975

    Google Scholar 

  • Ghosh S, Patil S, Ahire M et al (2011) Synthesis of gold nanoanisotrops using Dioscorea bulbifera tuber extract. J Nanomater 2011, Article ID 354793. https://doi.org/10.1155/2011/354793

  • Ghosh S, Patil S, Ahire M et al (2012a) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine 7:483–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Patil S, Ahire M et al (2012b) Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. J Nanobiotechnol 10:17

    Article  CAS  Google Scholar 

  • Glamočlija U, Haverić S, Čakar J, Durmić A, Haverić A, Bajrović K (2014) Bioactivity and genotoxicity of centuries old remedy Asplenium scolopendrium L. Int J Pharm 4(2):38–41

    Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO, ZnO, Ag, CNT, 2 Fullerenes) for different regions. Environ Sci Technol 43:9216–9222. https://doi.org/10.1021/es9015553

    Article  CAS  PubMed  Google Scholar 

  • Hammami S, Snène A, El Mokni R, Faidi K, Falconieri D, Dhaouadi H, Piras A, Mighri Z, Porcedda S (2016) Essential oil constituents and antioxidant activity of Asplenium ferns. J Chromatogr Sci 54(8):1341–1345. https://doi.org/10.1093/chromsci/bmw071

    Article  CAS  PubMed  Google Scholar 

  • Handy RD, Owen R, Valsami-Jones E (2008a) The ecotoxicology of nanoparticles and nanomaterials: current satus, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325. https://doi.org/10.1007/s10646-008-0206-0

    Article  CAS  PubMed  Google Scholar 

  • Handy RD, Kamme F, Lead JR, Hasselov M, Owen R, Crane M (2008b) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314. https://doi.org/10.1007/s10646-008-0199-8

    Article  CAS  PubMed  Google Scholar 

  • Hattori T, Inanaga S, Araki H, Morita S, Luxuva M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol Plant 123:459–466

    Article  CAS  Google Scholar 

  • Haverkamp R, Marshall A (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 11(6):1453–1463

    Article  CAS  Google Scholar 

  • Ho R, Teai T, Bianchini J-P, Laffont R, Raharivelomanana P (2011) Ferns: from traditional uses to pharmaceutical development, chemical identification of active principles. In: Kumar A, Fernández H, Revilla MA (eds) Working with ferns: issues and applications. Springer, New York, pp 321–346

    Chapter  Google Scholar 

  • Höhne H, Richter B (1981) Untersuchungen über den Mineralstoff- und Stickstoffgehalt von Farnkrautern. Flora 171:1–10

    Article  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, Hong NJ, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104–105115

    Article  CAS  Google Scholar 

  • IBM Corp Released (2011) IBM SPSS statistics for Windows, version 200 Armonk. IBM Corp, New York

    Google Scholar 

  • Jeevanandam J, Chan YS, Danquah MK (2017) Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New J Chem 41(7):2800–2814

    Article  CAS  Google Scholar 

  • Johnson M, Amutha S, Shibila T, Janakiraman N (2017) Green synthesis of silver nanoparticles using Cyathea nilgirensis Holttum and their cytotoxic and phytotoxic potentials. Part Sci Technol. https://doi.org/10.1080/02726351.2016.1278292

  • Jordan MA, Thrower D, Wilson L (1991) Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res 51:2212–2222

    CAS  PubMed  Google Scholar 

  • Kalcheva VP, Dragoeva AP, Kalchev KN, Enchev DD (2009) Cytotoxic and genotoxic effects of Br-containing oxalosphole on Allium cepa L. root tip cells and mouse bone marrow cells. Genet Mol Biol 32(2):389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalita S, Kandimalla R, Sharma KK, Kataki AC, Deka M, Kotoky J (2016) Amoxicillin functionalized gold nanoparticles reverts MRSA resistance. Mater Sci Eng C 61:720–727

    Article  CAS  Google Scholar 

  • Kandhasamy M, Arunachalam KD, Thatheyus AJ (2008) Drynaria quercifolia (L.) J.Sm: a potential resource for antibacterial activity. Afr J Microbiol Res 2:202–205

    Google Scholar 

  • Kang KC, Kim SS, Baik MH, Choi JW, Kwon SH (2008) Synthesis of silver nanoparticles by using the green chemical method. Appl Chem 12(2):281–284

    Google Scholar 

  • Khokhani D, Zhang C, Li Y, Wang Q, Zeng Q, Yamazaki A, Hutchins W, Zhou SS, Chen X, Yang CH (2013) Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora. Appl Environ Microbiol 79(18):5424–5436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klain SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  Google Scholar 

  • Klaine SJ, Koelmans AA, Horne N, Carley S, Handy RD, Kapustka L, Nowack B, Von der Kammer F (2012) Paradigms to assess the environmental impact of manufactured nanomaterials. Environ Toxicol Chem 31(1):3–14. https://doi.org/10.1002/etc.733

    Article  CAS  PubMed  Google Scholar 

  • Korbekandi H, Chitsazi MR, Asghari G, Najafi RB, Badii A, Iravani S (2014) Green biosynthesis of silver nanoparticles using Azolla pinnata whole plant hydroalcoholic extract. Green Processes Synth 3(5):365–373. https://doi.org/10.1515/gps-2014-0042

    CAS  Google Scholar 

  • Korthout HA, Casper MP, Kottenhagen MJ, Helmer Q, Wang M (2002) A tormentor in the quest for plant p-53-like proteins. FEBS Lett 526:53–57

    Article  CAS  PubMed  Google Scholar 

  • Koteswaramma B, Kamakshamma J, Varalaksmi S (2017) Biological synthesis of silver nanoparticles from aqueous extract of Actiniopteris radiata and evaluation of their antimicrobial activity. Int J Pharm Biol Sci 8(1):121–125

    CAS  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A 93:95–99

    Article  CAS  Google Scholar 

  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) A flow cytometric method to assess nanoparticle uptake in bacteria. Cytometry A 79A:707–712

    CAS  Google Scholar 

  • Kunjiappan S, Bhattacharjee C, Chowdhury R (2015) Hepatoprotective and antioxidant effects of Azolla microphylla based gold nanoparticles against acetaminophen induced toxicity in a fresh water common carp fish (Cyprinus carpio L.) Nanomed J 2(2):88–110

    CAS  Google Scholar 

  • Lai HY, Lim YY, Tan SP (2009) Antioxidative, tyrosinase inhibiting and antibacterial activities of leaf extracts from medicinal ferns. Biosci Biotechnol Biochem 73(6):1362–1366

    Article  CAS  PubMed  Google Scholar 

  • Lai HY, Lim YY, Kim KH (2010) Blechnum orientale Linn a fern with potential as antioxidant, anticancer and antibacterial agent. BMC Complement Altern Med 10:15. http://wwwbiomedcentralcom/1472-6882/10/15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai JC, Lai HY, Rao NK, Ng SF (2016) Treatment for diabetic ulcer wounds using a fern tannin optimized hydrogel formulation with antibacterial and antioxidative properties. J Ethnopharmacol 189:277–289. https://doi.org/10.1016/jep.2016.05.032

    Article  CAS  PubMed  Google Scholar 

  • Lee HB, Kim JC, Lee SM (2009) Antibacterial activity of two phloroglucinols, flavaspidic acids AB and PB, from Dryopteris crassirhizoma. Arch Pharm Res 32:655–659. https://doi.org/10.1007/s12272-009-1502-9

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Lim JM, Velmurugan P, Park YJ, Park YJ, Bang KS, Oh BT (2016) Photobiologic-mediated fabrication of silver nanoparticles with antibacterial activity. J Photochem Photobiol B 162:93–99. https://doi.org/10.1016/j.jphotobiol.2016.06.029

    Article  CAS  PubMed  Google Scholar 

  • Lila MA (2009) Interactions between flavonoids that benefit human health. In: Gould K, Davies K, Winefield C (eds) Anthocyanins biosynthesis, functions, and applications. Springer, New York, pp 305–324

    Google Scholar 

  • Lila MA, Raskin I (2005) Health-related interactions of phytochemicals. J Food Sci 7:R20–R27

    Article  Google Scholar 

  • Lim YH, Kim IH, Seo JJ (2007) In vitro activity of kaempferol isolated from the Impatiens balsamina alone and in combination with erythromycin or clindamycin against Propionibacterium acnes. J Microbiol 45(5):473–477

    CAS  PubMed  Google Scholar 

  • Liu R (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78:517S–520S

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wujisguleng W, Long C (2012) Food uses of ferns in China: a review. Acta Soc Bot Pol 81(4):263–270

    Article  Google Scholar 

  • Lok C, Ho C, Chen R, He Q, Tu W, Sun H, Tam PK, Chiu J, Chem C (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534

    Article  CAS  PubMed  Google Scholar 

  • Lu SG (2007) Pteridology. Higher Education Press, Beijing

    Google Scholar 

  • Ma XY, Xie CX, Liu C, Song JY, Yao H, Luo K, Zhu YJ, Gao T, Pang XH, Qian J, Chen SL (2010) Species identification of medicinal pteridophytes by a DNA barcode marker, the chloroplast psbA-trnH intergenic region. Biol Pharm Bull 33(11):1919–1924

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles - a review. Environ Pollut 172:76–85. https://doi.org/10.1016/j.envpol.2012.08.011

    Article  CAS  PubMed  Google Scholar 

  • Magaye RR, Wu A, Zhao J, Zou B, Shi H, Yu H, Liu K, Lin X, Xu J, Yang C (2014) Acute toxicity of nickel nanoparticles in rats after intravenous injection. Int J Nanomedicine 9(1):1393–1402

    PubMed  PubMed Central  Google Scholar 

  • Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) "Green" nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6(1):35–44

    CAS  Google Scholar 

  • Manzo S, Miglietta ML, Rametta G, Buono S, Di Francia G (2013) Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci Total Environ 445-446:371–376. https://doi.org/10.1016/j.scitotenv.2012.12.051

    Article  CAS  PubMed  Google Scholar 

  • Marston A, Hostettmann K (2006) Separation and quantification of flavonoids. In: Andersen ØM, Markham KR (eds) Flavonoids chemistry, biochemistry and applications. Taylor & Francis Group, Boca Raton, London, New York, pp 1–36

    Google Scholar 

  • McFee AF, Tice RR (1990) Influence of treatment to sacrifice time and the presence of BrdUrd on chemically-induced aberration rates in mouse marrow cells. Mutat Res 241:95–108

    Article  CAS  PubMed  Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  • Moran RC (2004) A natural history of ferns Portland. Timber Press, Portland

    Google Scholar 

  • Moran RC (2008) Diversity, biogeography, and floristics. In: Ranker TA, Haufler CH (eds) Biology and evolution of ferns and Lycophytes. Cambridge University Press, New York, pp 367–394

    Chapter  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353. https://doi.org/10.1088/0957-4484/16/10/059

    Article  CAS  PubMed  Google Scholar 

  • Nalwade AR, Badhe MN, Pawale CB, Hinge SB (2013) Rapid biosynthesis of silver nanoparticles using fern leaflet extract and evaluation of their antibacterial activity. Int J Biol Technol 4(2):12–18

    CAS  Google Scholar 

  • Nath K, Bhattacharya MK, Sen A, Kar S (2013) Antibacterial activity of frond extract of Asplenium nidus L., a threatened ethnomedicinal fern of North East India. International. J Pharmacogn Phytochem 28(2):1169–1172

    Google Scholar 

  • Nayak N, Rath S, Mishra MP, Ghosh G, Padhy RN (2013) Antibacterial activity of the terrestrial fern Lygodium flexuosum (L.) Sw. against multidrug resistant enteric- and uro- pathogenic bacteria. J Acute Dis 2:270–276

    Article  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effect of nanoparticles in the environment. Environ Pollut 150(1):5–22

    Article  CAS  PubMed  Google Scholar 

  • Pal SK (2012) Study of solvent extracts of some selected ferns for antimicrobial activity. Indian J Biol Sci 18:33–37

    Google Scholar 

  • Pan C, Chen YG, Ma XY, Jiang JH, He F, Zhang Y (2011) Phytochemical constituents and pharmacological activities of plants from the genus Adiantum: a review. Trop J Pharm Res 10(5):681–692

    CAS  Google Scholar 

  • Panneerselvam C, Murugan K, Roni M, Aziz AT, Suresh U, Rajaganesh R, Mathiyazhagan P, Subramaniam J, Devakumar D, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Desneux N, Benelli G (2016) Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. J Parasitol Res 115(3):997–1013. https://doi.org/10.1007/s00436-015-4828-x

    Article  Google Scholar 

  • Parihar P, Parihar L, Bohra A (2006) Antibacterial activity of Athyrium pectinatum (Wall) Presl. Nat Prod Rad 5(4):262–265

    Google Scholar 

  • Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5(3):69–78. https://doi.org/10.1049/iet-nbt.2010.0033

    Article  CAS  PubMed  Google Scholar 

  • Prathna TC, Mathew L, Chandrasekaran N, Raichur AM, Mukherjee A (2010) Biomimetic synthesis of nanoparticles: science, technology and applicability. In: Mukherjee A (ed) Biomimetics learning from nature. InTech. https://doi.org/10.5772/8776. https://www.intechopen.com/books/biomimetics-learning-from-nature/biomimetic-synthesis-of-nanoparticles-science-technology-amp-applicability

  • Rajaganesh R, Murugan K, Panneerselvam C, Jayashanthini S, Aziz AT, Roni M, Suresh U, Trivedi S, Rehman H, Nicoletti M, Benelli G, Higuchi A (2016) Fern-synthesized silver nanocrystals: towards a new class of mosquito oviposition deterrents? Res Vet Sci 109:40–51. https://doi.org/10.1016/j.rvsc.2016.09.012

    Article  CAS  PubMed  Google Scholar 

  • Rajesh KD, Vasantha S, Panneerselvam A, Rajesh NV, Jeyathilakan N (2016) Phytochemical analysis, in vitro antioxidant potential and gas chromatography-mas spectrometry studies of Dicranopteris linearis. Asian J Pharm Clin Res 9(Suppl. 2):1–6

    CAS  Google Scholar 

  • Rani D, Khare PB, Dantu PK (2010) In vitro antibacterial and antifungal properties of aqueous and non-aqueous frond extracts of Psilotum nudum, Nephrolepis biserrata and Nephrolepis cordifolia. Indian J Pharm Sci 72(6):818–822. https://doi.org/10.4103/0250-474X.84606

    Article  PubMed  PubMed Central  Google Scholar 

  • Rank J (2003) The method of Allium anaphase-telophase chromosome aberration assay. Ekologija (Vilnius) 1:38–42

    Google Scholar 

  • Raut R, Kolekar N, Lakkakula J, Mendhulkar V, Kashid S (2010) Extracellular synthesis of silver nanoparticles using dried leaves of Pongamia pinnata (L.) Pierre. Nano-Micro Lett 2(2):106–113. https://doi.org/10.5101/nml.v2i2.p106-113

    Article  CAS  Google Scholar 

  • Repetto G, Jos A, Hayen MJ, Molero ML, del Peso A, Salguero M, del Castillo P, Rodriguez-Vicente MC, Repetto M (2001) A test battery for the ecotoxicological evaluation of pentachlorophenol. Toxicol In Vitro 15:503–509. https://doi.org/10.1016/S0887-2333(01)00055-8

    Article  CAS  PubMed  Google Scholar 

  • Roco MC (2005) Environmentally responsible development of nanotechnology. Environ Sci Technol 39(5):106A–112A. https://doi.org/10.1021/es053199u

    Article  CAS  PubMed  Google Scholar 

  • Roos M (1996) Mapping the world’s pteridophyte diversity - systematics and floras. In: Camus JM, Gibby M, Johns RJ (eds) Pteridology in perspective. Kew: Royal Botanic Gardens, London, pp 29–42

    Google Scholar 

  • Roudsari MT, Bahrami AR, Dehghani H, Iranshani M, Matin MM, Mahmoudi M (2012) Bracken-fern extract induce cell cycle arrest and apoptosis in certain cancer cell lines. Asian Pac J Cancer Prev 13(12):6047–6053

    Article  PubMed  Google Scholar 

  • Samidoss CM, Murugn K, Mathath R, Sivaprizajothi S, Suganya NA (2013) Larvicidal potential of silver nanoparticles synthesized using Adiantum capillus-veneris against Anopheles stephensi (Diptera; Culicidae). Int J Curr Trop Med Health Res 1(1):9–18

    Google Scholar 

  • Sant DG, Gujarathi TR, Harne SR, Ghosh S, Kitture R, Kale S, Chopade BA, Pardesi KR (2013) Adiantum philippense L. frond assisted rapid green synthesis of gold and silver nanoparticles. J Nanopart 2013:9. https://doi.org/10.1155/2013/182320

    Article  CAS  Google Scholar 

  • Santhoshkumar S, Nagarajan N (2014) AM fungal association in the rhizosphere soil of some pteridophytic plant species in Valparai Hills, Western Ghats of Tamilnadu, India. Int J Life Sci 2(3):201–206

    Google Scholar 

  • Santos ATB, Silva Araujo TF, Silva LCN, Silva CB, Oliveira AFM, Araujo JM, Menezes Lima VL, Santos Correia MT (2015) Organic extract from Indigofera suffruticosa leaves have antimicrobial and synergic actions with erythromycin against Staphylococcus aureus. Front Microbiol 6:1–7. https://doi.org/10.3389/fmicb.2015.00013

    Article  Google Scholar 

  • Santos RD, Pimenta-Freire G, FJB F, Dias-Souza MV (2016) Interference of flavonoids and carotenoids on the antimicrobial activity of some drugs against clinical isolates of Pseudomonas aeruginosa. Int Food Res J 23(3):1268–1273

    Google Scholar 

  • Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature 428(6982):553–557. https://doi.org/10.1038/nature02361

    Article  CAS  PubMed  Google Scholar 

  • Simán SE, Povey AC, Ward TH, Margison GP, Sheffield E (2000) Fern spore extracts can damage DNA. Br J Cancer 83(1):69–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinha T, Ahmaruzzaman M (2016) Indigenous north eastern Indian fern mediated fabrication of spherical silver and anisotropic gold nano structured materials and their efficiency for the abatement of perilous organic compounds from waste eater – a green approach. RSC Adv 6:21076–21089. https://doi.org/10.1039/C5RA26124D

    Article  CAS  Google Scholar 

  • Soare LC, Ferdeș M, Deliu I, Gibea A (2012a) Studies regarding the antibacterial activity of some extracts of native pteridophytes. UPB Sci Bull Ser B 74(1):21–26

    Google Scholar 

  • Soare LC, Ferdeș M, Stefanov S, Denkova Z, Nikolova R, Denev P, Bejan C, Păunescu A (2012b) Antioxidant activity, polyphenols content and antimicrobial activity of several native pteridophytes of Romania. Not Bot Hort Agrobot Cluj Napoca 40(1):53–57. https://doi.org/10.15835/nbha4016648

    CAS  Google Scholar 

  • Soare LC, Deliu I, Iosub I, Dobrescu CM, Ferdeș M (2012c) New therapeutic formulations with an antibacterial effect, based on plant extracts. Current trends in. Nat Sci 1(2):79–82

    Google Scholar 

  • Soliman MI (2001) Genotoxicity testing of neem plant (Azadirachta indica A. Juss) using the Allium cepa chromosome aberration assay. J Biol Sci 1(11):1021–1027

    Article  Google Scholar 

  • Souri E, Amin G, Farsam H, Jalalizadeh H, Barezi S (2008) Screening of thirteen medicinal plant extracts for antioxidant activity. Iran J Pharm Res 7(2):149–154

    Google Scholar 

  • Șuțan AN, Fierăscu I, Fierăscu RC, Manolescu DȘ, Soare LC (2016) Comparative analytical characterization and in vitrocytogenotoxic activity evaluation of Asplenium scolopendrium L. leaves and rhizome extracts prior to and after Ag nanoparticles phytosynthesis. Ind Crop Prod 83:379–386. https://doi.org/10.1016/j.indcrop.2016.01.011

    Article  CAS  Google Scholar 

  • Tedesco SB, Laughinghouse HD IV (2012) Bioindicator of genotoxicity: the Allium cepa test. In: Srivastava JK (ed) Environmental contamination. InTech, Rijeka, pp 137–156

    Google Scholar 

  • Teow SY, Ali SA (2015) Synergistic antibacterial activity of Curcumin with antibiotics against Staphylococcus aureus. Pak J Pharm Sci 28(6):2109–2114

    CAS  PubMed  Google Scholar 

  • Thakar SB, Ghorpade PN, Kale MV, Sonawane KD (2015) Fern Ethnomedicinal Plant Database: exploring fern ethnomedicinal plants knowledge for computational drug discovery. Curr Comput Aided Drug Des 11(3):266–271

    Article  CAS  PubMed  Google Scholar 

  • Tryon AF, Lugardon B (1978) Wall structure and mineral content in Selaginella spores. Pollen Spores 20:315–340

    Google Scholar 

  • Turkevich J, Stevenson PC, Hiller PCJ (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55

    Article  Google Scholar 

  • Valizadeh H, Sonboli A, Kordi FM, Dehghan H, Bahadori MB (2015) Cytotoxicity, antioxidant activity and phenolic content of eight fern species from North of Iran. Pharm Sci 21:18–24. https://doi.org/10.15171/PS.2015.12

    Article  Google Scholar 

  • Verma DK, Hasan SH, Banik RM (2016) Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. J Photochem Photobiol B 155:51–59. https://doi.org/10.1016/j.jphotobiol.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Lawson R, Ray P, Yu H (2011) Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicol Ind Health 27(6):547–554. https://doi.org/10.1177/0748233710393395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xavier GSA, Selvaraj P, Nida J (2016) Impact of phytoecdysone fractions of the ferns Cyclosorous interruptus, Christella dentata and Nephrolepis cordifolia on the biology of Spodoptera litura (Fab). J Biopest 9(2):125–134

    Google Scholar 

  • Xie Y, Zheng Y, Dai X, Wang Q, Cao J, Xiao J (2015) Sesonal dynamics of total flavonoid contents and antioxidant activity of Dryopteris erythrosora. Food Chem 186:113–118

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Hatano T, Ito H (2005) High molecular weight plant polyphenols (tannins): prospective functions. In: Romeo JT (ed) Recent advances in phytochemistry, volume 39: chemical ecology and phytochemistry of forest ecosystems. Elsevier Inc., San Diego, CA, pp 163–190.

    Google Scholar 

  • Yusuf UK (1994) Flavonoid glycosides in the fern Blechnum orientale Linn. Am Fern J 84:69–70

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the following researchers for their contribution to the work: PhD Physicist Cătălin Ducu and PhD Physicist Denis Negrea (University of Pitești). The spores of Athyrium filix-femina were provided by The Romanian Pteridological Society.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soare, L.C., Şuţan, N.A. (2018). Current Trends in Pteridophyte Extracts: From Plant to Nanoparticles. In: Fernández, H. (eds) Current Advances in Fern Research. Springer, Cham. https://doi.org/10.1007/978-3-319-75103-0_16

Download citation

Publish with us

Policies and ethics