Skip to main content

Mathematical-Computational Modeling in Behavior’s Study of Repetitive Discharge Neuronal Circuits

  • Chapter
  • First Online:
Book cover Theoretical and Applied Aspects of Systems Biology

Abstract

Mathematical-computational modeling is a tool that has been widely used in the field of Neuroscience. Despite considerable advances of Physiological Sciences, the neuronal mechanisms involved in the abilities of central nervous system remain obscure, but they can be revealed through modeling. Significant amount of experimental data already available has facilitated the development of models that combine experimentation with theory. They allow to evaluate hypotheses and to seek understanding of neuronal circuit functioning capable of explaining neurophysiological deficits. To model the behavior of repetitive discharge of neuronal circuits, we have used differential equations, graph theory, and other mathematical methods. Through computational simulations, using programs developed in C and C ++ language and neurophysiological data obtained in the literature, we can test the model’s behavior in face of numerical variations of their parameters, trying to observe their characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(4):312. https://doi.org/10.1038/nrn2575.

    Article  Google Scholar 

  2. Cooper GM, Hausman RE. The cell: a molecular approach. Q Rev Biol. 2007;82(1):44. Fourth Edition. The University of Chicago Press. ISSN 0-87893-219-4. https://doi.org/10.1086/ 513338.

  3. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111(27):7812–24. American Chemical Society. ISSN 1520-6106. https://doi.org/10.1021/jp071097f.

    Article  Google Scholar 

  4. Levitan IB, Kaczmarek LK. The neuron: cell and molecular biology. Oxford: Oxford University Press; 2002.

    Google Scholar 

  5. Cortez CM, Silva D. Fisiologia Aplicada a Psicologia. Guanabara Koogan. 1a. Rio de Janeiro: Edição; 2008.

    Google Scholar 

  6. Dai Z, Yan C, Li K, Wang Z, Wang J, Cao M, Lin Q, Shu N, Xia M, Bi Y, He Y. Identifying and mapping connectivity patterns of brain network hubs in Alzheimer’s disease. Cereb Cortex. 2014;25(10):3723–42. Oxford University Press

    Article  Google Scholar 

  7. Sorger PK, Lopez C, Flusberg D, Eydgahi H, Bachman J, Sims J, Chen W, Spencer S, Gaudet S. Measuring and modeling life-death decisions in single cells. FASEB J. 2012; (26), no. 1 Supplement 228.1. Federation of American Societies for Experimental Biology.

    Google Scholar 

  8. Tao H, Guo S, Ge T, Kendrick KM, Xue Z, Liu Z, Feng J. Depression uncouples brain hate circuit. Mol Psychiatry. 2011;18:101–11. https://doi.org/10.1038/mp.2011.127.

    Article  Google Scholar 

  9. Richardson RJ, Blundon JA, Bayazitov IT, Zakharenko SS. Connectivity patterns revealed by mapping of active inputs on dendrites of thalamorecipient neurons in the auditory cortex. J Neurosci. 2009;29(20):6406–17. https://doi.org/10.1523/JNEUROSCI.0258-09.

    Article  Google Scholar 

  10. Sporns O, Tononi G, Edelman GM. Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res. 2002;135:69–74. https://doi.org/10.1016/S0166-4328 (02)00157-2.

    Article  Google Scholar 

  11. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC. Organization, development and function of complex brain networks. Trends Cogn Sci. 2004;8:418–25. https://doi.org/10.1016/j.tics.2004. 07.008.

    Article  Google Scholar 

  12. Sporns O, Honey CJ, Kötter R. Identification and classification of hubs in brain networks. PLoS One. 2007;2:e1049.

    Article  Google Scholar 

  13. Pinto TM, Wedemann RS, Cortez CM. Modeling the electric potential across neuronal membranes: the effect of fixed charges on spinal ganglion neurons and neoroblastoma cells. PLoS One. 2014;9(5):e96194.

    Article  Google Scholar 

  14. Cardoso FRG, Cruz FAO, Silva D, Cortez CM. Computational modeling of synchronization process of the circadian timing system of mamals. Biol Cybern. 2009;100:385–93.

    Article  Google Scholar 

  15. Cardoso FRG, Cruz FAO, Silva D, Cortez CM. A simple model for the circadian timing system of Mammals. Braz J Med Biol Res. 2009;42:122–7.

    Article  Google Scholar 

  16. Velarde MG, Nekorkin VI, Kazantsev VB, Makarenko VI, Llinás R. Modeling inferior olive neuron dynamics. Neural Netw. 2002;15:5–10. https://doi.org/10.1016/S0893-6080(01) 00130-7.

    Article  Google Scholar 

  17. Ingalls BP. Mathematical modelling in systems biology: an introduction. 2015. Available http://www.math.uwaterloo.ca/~bingalls/MMSB/MMSB_w_solutions.pdf. Accessed Oct 2017.

  18. Dalcin BLG, Cruz FAO, Cortez CM, Passos EL. Applying backpropagation neural network in the control of medullary reflex pattern. International conference of computational methods in science and engineering (ICCMSE 2015). Athens. 2015;1702:130006–130006-4.

    Google Scholar 

  19. Dalcin BLG, Cruz FAO, Cortez-Maghelly C, Passos EL. Computer modeling of a spinal reflex circuit. Braz J Phys. 2005;4(35):987–94.

    Article  Google Scholar 

  20. Cruz FAO, Cortez CM. Computer simulation of a central pattern generator via Kuramoto model. Physica A. 2005;353:258–70.

    Article  Google Scholar 

  21. Cruz FAO, Silva D, Cortez CM. Simulation of a spinal reflex circuit model controlled by a central pattern generator. Far East J Appl Math. 2008;33:307–36.

    MathSciNet  MATH  Google Scholar 

  22. Hadley JA, Kraguljac NV, White DM, Ver Hoef L, Tabora J, Lahti AC. Change in brain network topology as a function of treatment response in schizophrenia: a longitudinal resting-state fMRI study using graph theory. NPJ Schizophr. 2016;2:16014. https://doi.org/10.1038/npjschz.2016.14.

    Article  Google Scholar 

  23. Stobb M, Peterson JM, Mazzag B, Gahtan E. Graph theoretical model of a sensorimotor connectome in zebrafish. PLoS One. 2012;7(5):e37292.

    Article  Google Scholar 

  24. Rodrigues VF, Castro MCS, Wedemann RS, Cortez CM. A model for reverberating circuits with controlled feedback. AIP Conference Proceedings 2015; 1702:130005. Published by the AIP Publishing. https://doi.org/10.1063/1.4938912.

  25. Hecht-Nielsen R. Neurocomputing. Reading: Addison-Wesley Publish Co; 1990. https://doi.org/10.1038/359463a0.

    Book  Google Scholar 

  26. Brooks RA. Elephants don’t play chess. Robot Auton Syst. 1990;6:3–15.

    Article  Google Scholar 

  27. Nocks L. The robot: the life story of a technology. Westport: Greenwood Publishing Group; 2007.

    Google Scholar 

  28. Johnson LR, Ledoux JE, Doyère V. Hebbian reverberations in emotional memory micro circuits. Front Neurosci. 2009;3:198–205. https://doi.org/10.3389/neuro.01.027.

    Article  Google Scholar 

  29. Di Lazzaro V, Ziemann U. The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex. Front Neural Circ. 2013;7:18. https://doi.org/10.3389/fncir.2013.00018.

    Article  Google Scholar 

  30. Guyton AC, Hall JE. Textbook of medical physiology. 11th ed. Amsterdam: Elsevier Saunders; 2006.

    Google Scholar 

  31. Kalil CA, Castro MCS, Cortez CM. Computer model of reverberant and parallel circuit coupling. International Conference of Computational Methods in Science and Engineering (ICCMSE 2017). AIP Conference Proceedings. 2017. Published by the AIP Publishing.

    Google Scholar 

  32. Mongillo G, Barak O, Tsodyks M. Synaptic theory of working memory. Science. 2008;319:1543–6.

    Article  Google Scholar 

  33. Takeuchi T, Duszkiewicz AJ, Morris RGM. The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369:20130288.

    Article  Google Scholar 

  34. Walsh IB, Van Den Berg RJ, Marani E, Rietveld WJ. Spontaneous and stimulated firing in cultured rat suprachiasmatic neurons. Brain Res. 1992;588:120–31.

    Article  Google Scholar 

  35. Ef B, Barret JN, Crill E. Voltage-sensitive outward currents in cat motoneurones. J Physiol. 1980;304:251–76.

    Article  Google Scholar 

  36. Kim YI, Dudek FE. Membrane properties of rat suprachiasmatic nucleus neurons receiving optic nerve input. J Physiol. 1993;464:229–43.

    Article  Google Scholar 

  37. Kim YI, Dudek FE. Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: inhibitory synaptic mechanisms. J Physiol. 1992;458:247–60.

    Article  Google Scholar 

  38. Carp JS. Physiological properties of primate lumbar motoneurons. J Neurophysiol. 1992;68:1121–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Clicia Stelling de Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cortez, C.M., de Castro, M.C.S., de Freitas Rodrigues, V., Kalil, C.A., Silva, D. (2018). Mathematical-Computational Modeling in Behavior’s Study of Repetitive Discharge Neuronal Circuits. In: Alves Barbosa da Silva, F., Carels, N., Paes Silva Junior, F. (eds) Theoretical and Applied Aspects of Systems Biology. Computational Biology, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-74974-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74974-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74973-0

  • Online ISBN: 978-3-319-74974-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics