Skip to main content

Developing a Robust Disaster Response Robot: CHIMP and the Robotics Challenge

  • Chapter
  • First Online:
The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue

Abstract

CHIMP, the CMU Highly Intelligent Mobile Platform, is a humanoid robot capable of executing complex tasks in dangerous, degraded, human-engineered environments, such as those found in disaster response scenarios. CHIMP is uniquely designed for mobile manipulation in challenging environments, as the robot performs manipulation tasks using an upright posture, yet uses more stable prostrate postures for mobility through difficult terrain. In this paper, we report on the improvements made to CHIMP—both in its mechanical design and its software systems—in preparation for the DARPA Robotics Challenge Finals in June 2015. These include details on CHIMP’s novel mechanical design, actuation systems, robust construction, all terrain mobility, supervised autonomy approach, and unique user interfaces utilized for the challenge. Additionally, we provide an overview of CHIMP’s performance and detail the various lessons learned over the course of the challenge. CHIMP was one of the winners of the DARPA Robotics Challenge, completing all tasks and finishing 3rd place of 23 teams. Notably, CHIMP was the only robot to stand back up after accidentally falling over, a testament to the robustness engineered into the robot and a remote operator’s ability to execute complex tasks using a highly capable robot. We present CHIMP as a concrete engineering example of a successful disaster response robot.

At the time the work described in this paper was performed.

A version of this article was previously published in the Journal of Field Robotics, vol. 34, issue 2, pp. 281–301, © Wiley 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.gazebosim.org/.

  2. 2.

    http://www.ode.org.

  3. 3.

    http://www.boost.org/.

  4. 4.

    http://ompl.kavrakilab.org/.

References

  • Berenson, D., Srinivasa, S., Ferguson , D., & Kuffner, J. (2009). Manipulation planning on constraint manifolds. In IEEE International Conference on Robotics and Automation (ICRA ’09).

    Google Scholar 

  • Besl, P. J., & McKay, H. D. (1992). A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.

    Article  Google Scholar 

  • Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H., et al. (2015). An architecture for online affordance-based perception and whole-body planning. Journal of Field Robotics, 32(2), 229–254.

    Article  Google Scholar 

  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.

    Article  MathSciNet  Google Scholar 

  • George, M., Tardif, J.-P., & Kelly, A. (2015). Visual and inertial odometry for a disaster recovery humanoid. In Field and service robotics (pp. 501–514). Springer.

    Google Scholar 

  • Hebert, P., Bajracharya, M., Ma, J., Hudson, N., Aydemir, A., Reid, J., et al. (2015). Mobile manipulation and mobility as manipulationdesign and algorithms of robosimian. Journal of Field Robotics, 32(2), 255–274.

    Article  Google Scholar 

  • Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., et al. (2015). Team IHMC’s lessons learned from the DARPA robotics challenge trials. Journal of Field Robotics, 32(2), 192–208.

    Article  Google Scholar 

  • Kuffner, J. J. & LaValle, S. M. (2000). RRT-connect: An efficient approach to single-query path planning. In 2000 IEEE International Conference on Robotics and Automation, Proceedings ICRA ’00 (Vol. 2, pp. 995–1001).

    Google Scholar 

  • Lim, J., Shim, I., Sim, O., Joe, H., Kim, I., Lee, J., et al. (2015). Robotic software system for the disaster circumstances: System of team KAIST in the DARPA robotics challenge finals. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (pp. 1161–1166). IEEE.

    Google Scholar 

  • Nelson, G., Saunders, A., Neville, N., Swilling, B., Bondaryk, J., Billings, D., et al. (2012). Petman: A humanoid robot for testing chemical protective clothing. Journal of the Robotics Society of Japan, 30(4), 372–377.

    Article  Google Scholar 

  • Pitzer, B., Styer, M., Bersch, C., DuHadway, C., & Becker, J. (2011). Towards perceptual shared autonomy for robotic mobile manipulation. In 2011 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6245–6251).

    Google Scholar 

  • Ruehl, S. W., Hermann, A., Xue, Z., Kerscher, T., & Dillmann, R. (2011). Graspability: A description of work surfaces for planning of robot manipulation sequences. In 2011 IEEE International Conference on Robotics and Automation (ICRA) (pp. 496–502).

    Google Scholar 

  • Stentz, A. T., Herman, H., Kelly, A., Meyhofer, E., Haynes, G. C., Stager, D., et al. (2015). CHIMP, the CMU highly intelligent mobile platform. Journal of Field Robotics (JFR), Special Issue: Special Issue on DARPA Robotics Challenge (DRC), 32(2), 209–228.

    Article  Google Scholar 

  • Åžucan, I. A., Moll, M., & Kavraki, L. E. (2012). The open motion planning library. IEEE Robotics & Automation Magazine, 19(4), 72–82. http://ompl.kavrakilab.org.

    Article  Google Scholar 

  • Urata, J., Nakanishi, Y., Okada, K., & Inaba, M. (2010). Design of high torque and high speed leg module for high power humanoid. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4497–4502). IEEE.

    Google Scholar 

Download references

Acknowledgements

Development of the CHIMP robot has been supported by DARPA/SPAWAR under contract number N65236-12-C-3886. This work would not have been possible without the dedication of the entire Team Tartan Rescue and the National Robotics Engineering Center at Carnegie Mellon University. Additional team sponsors have provided generous support, notably from Foxconn, Amazon, and Carnegie Robotics, with additional support by Accurate Gear and Machine, Brentronics, Eclipse Metal Fabrication, Elmo Motion Control, Faulhaber, Glenair, Google, Harmonic Drive, Honeywell, Kollmorgen, Micromo, Oshkosh/JLG, Pratt & Miller, Robotiq, Sepac, Shell, and THK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Clark Haynes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haynes, G.C. et al. (2018). Developing a Robust Disaster Response Robot: CHIMP and the Robotics Challenge. In: Spenko, M., Buerger, S., Iagnemma, K. (eds) The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue. Springer Tracts in Advanced Robotics, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-74666-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74666-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74665-4

  • Online ISBN: 978-3-319-74666-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics