Skip to main content

Small Rhodium Clusters: A HF and DFT Study–III

  • Conference paper
  • First Online:
  • 698 Accesses

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 31))

Abstract

Small neutral and ionic Rhodium clusters Rhn (n = 6, 8, 13) are investigated by ab initio molecular orbital calculations with full optimization at the Restricted Open Shell Hartree-Fock (ROHF) level with a LANL2DZ basis set, and with the methods based on Density Functional Theory, B3LYP/MWB, B3LYP/PBE. The clusters are found favor close-packed icosahedron structures in contrast to previous theoretical predictions that rhodium clusters should favor cubic motifs. A range of spin multiplicities are investigated for each cluster and we present the minimum energy conformation along with the vertical and adiabatic ionization potentials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cox AJ, Louderback JG, Bloomfield LA (1993) Experimental observation of magnetism in rhodium clusters. Phys Rev Lett 71:923–926

    Article  CAS  PubMed  Google Scholar 

  2. Cox AJ, Louderback JG, Apsel SE, Bloomfield LA (1994) Magnetism in 4d-transition metal clusters. Phys Rev B 4:12295–12298

    Article  Google Scholar 

  3. Schmid G (2004) Nanoparticles from theory to applications. Wiley-VCH. ISBN 3527305076

    Google Scholar 

  4. Wei J, Iglesia E (2004) Structural requirements and reaction pathways in methane activation and chemical conversion catalized by rhodium. J Catal 225:116–127

    Article  CAS  Google Scholar 

  5. Nolte P, Stierle A, Jin-Phillipp NY, Kasper N, Schulli TU, Dosch H (2008) Shape changes of supported Rh nanoparticles during oxidation and reduction cycles. Science 321:1654–1658

    Article  CAS  PubMed  Google Scholar 

  6. Loferty PJ (2013) Commodity report: platinum group metals. United States Geological Survey

    Google Scholar 

  7. Heldings FM, Capka M (2003) Rhodium complexes as catalyst for hydrosilylation crosslinking of silicone ruber. J Appl Polymer Sci 30(5):1837

    Google Scholar 

  8. Halligudi SB et al (1992) Hydrogenation of bencene to cycloexene catalized by Rhodium(I) complex supported on montmorillonite clay. React Kinet Catal Lett 48(2):547–552

    Article  CAS  Google Scholar 

  9. Cramer Stepen S Jr, Covino, Bernard (1990) ASM handbook materials park OH: ASM international report pp 393–396

    Google Scholar 

  10. Harding DJ, Gruene P, Haertelt M, Meijer G, Fielicke A, Hamilton SM, Hopkins WS, Mackenzie RS, Neville SP, Walsh TR (2010) Probing the structures of gas-phase rhodium cluster cation by far-infrared spectroscopy. J Chem Phys 133:214304–214313

    Article  CAS  PubMed  Google Scholar 

  11. Harding DJ, Walsh TR, Hamilton SM, Hopkins WS, Mackenzie SR, Gruene P, Haertelt M, Maijer G, Fielicke F (2010) Comunications: the structure of Rh +8 in the gas phase. J Chem Phys 132:011101–011104

    Article  CAS  PubMed  Google Scholar 

  12. Knickelbin MB (2005) Phys Rev B 71:18444

    Google Scholar 

  13. Apsel SE, Emmert JW, Deng J, Bloomfield LA (1996) Surface-enhanced magnetism in nickel clusters. Phys Rev Lett 76:1441

    Article  CAS  PubMed  Google Scholar 

  14. Douglas DC, Bucher JP, Bloomfield LA (1992) Magnetic studies of free ferromagnetic clusters. Phys Rev B 45:6341–6344

    Article  Google Scholar 

  15. Knickelbein MB (2001) Experimental observation of superparamagnetism in manganese clusters. Phys Rev Lett 86:5255–5257

    Article  CAS  PubMed  Google Scholar 

  16. Knickelbein MB (2004) Magnetic ordering in manganese clusters. Phys Rev B 70:014424

    Article  CAS  Google Scholar 

  17. Xu X, Yin S, Moro R, de Herr WA (2005) Magnetic moments and adiabatic magnetization of free cobalt clusters. Phys Rev Lett 95:237209

    Article  CAS  PubMed  Google Scholar 

  18. Reddy BV, Khanna SN, Dunlap BI (1993) Giant magnetic moments of 4d clusters. Phys Rev Lett 70:3323–3326

    Article  CAS  PubMed  Google Scholar 

  19. Bae YC, Kumar V, Osanai H, Kawazoe Y (2005) Cubic magic clusters of rhodium stabilized with eight-center bonding: magnetism and growth. Phys Rev B 72:115427–115432

    Article  CAS  Google Scholar 

  20. Chang CM, Chou MY (2004) Alternative low-symmetry structure for 13-atoms metal clusters. Phys Rev Lett 93:133401–133404

    Article  CAS  PubMed  Google Scholar 

  21. Aguilera-Granja F, Rodríguez-López JL, Michaelian K, Berlanga-Ramírez EO, Vega A (2002) structure and magnetism of small rhodium clusters. Phys Rev B 66:224410–224419

    Article  CAS  Google Scholar 

  22. Wang LL, Johnson DD (2007) Density functional study of structural trends for late-transition-metal 13-atoms clusters. Phys Rev B 75:235405–235409

    Article  CAS  Google Scholar 

  23. Sun Y, Zhang M, Fournier R (2008) Periodic trends in the geometric structures of 13-atoms metal clusters. Phys Rev B 77:0754435

    Google Scholar 

  24. Jinlong Y, Toigo F, Kelin W (1994) Structural electronic, and magnetic properties of small rhodium clusters. Phys Rev B 50:7915–7924

    Article  CAS  Google Scholar 

  25. Reddy BV, Nayak SK, Khanna SN, Rao BK, Jena P (1999) Electronic structure and magnetism of Rhn (n = 2-13) clusters. Phys Rev B 59:5214–5222

    Article  CAS  Google Scholar 

  26. Guirado-López R, Villaseñor-González P, Dorantes-Dávila J, Pastor GM (2000) Magnetism of Rhn clusters. J Appl Phys 87:4906

    Article  Google Scholar 

  27. Aguilera-Granja F, Montejano-Carrizales JM, Guirado-López RA (2006) Magnetic properties of small 3d and 4d transition metal clusters: the role of a noncompact growth. Phys Rev B 73:115422

    Article  CAS  Google Scholar 

  28. Bae YC, Osansi H, Kumar V, Kawazone Y (2004) Nonicosahedral growth and magnetism behavior of rhodium clusters. Phys Rev B 70:195413–195419

    Article  CAS  Google Scholar 

  29. Rogan J, García G, Loyola C, Orellana W, Ramírez R, Kiwi M (2006) Alternative search strategy for minimal energy nanocluster structures: the case of rhodium, palladium, and silver. J Chem Phys 125:214708–214712

    Article  CAS  PubMed  Google Scholar 

  30. Joswig JO, Springborg M (2003) Generic algorithms search for global minima of aluminium clusters using Sutton-Chen potential. Phys Rev B 68:085408

    Article  CAS  Google Scholar 

  31. Zhan L, Chen JZY, Montejano-Carrizalez JM, Guirado-López RA (2006) Phys Rev B 73:115422

    Article  CAS  Google Scholar 

  32. Aprá E, Ferrando R, Fontunelli A (2006) Density-functional global optimization of gold clusters. Phys Rev B 73:205414

    Article  CAS  Google Scholar 

  33. Wales DJ, Doye JPK (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A 101:5111–5116

    Article  CAS  Google Scholar 

  34. Kim HG, Choi SK, Lee HM (2008) New algorithm in the basin-hopping Monte Carlo to find the global minimum structure of unary and binary metallic nano clusters. J Chem Phys 128:144702

    Article  CAS  PubMed  Google Scholar 

  35. Erkoc S, Saltaf R (1999) Monte Carlo computer simulations of copper clusters. Phys Rev A 60:3053

    Article  CAS  Google Scholar 

  36. Cheng J, Fournier R (2004) Structural optimization of atomic clusters by Tabu search in descriptor spaces. Theor Chem Acc 112:7–15

    Article  CAS  Google Scholar 

  37. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371

    Article  CAS  Google Scholar 

  38. Piotrowsky MJ, Piquini P, Da Silva JLF (2010) Density functional theory investigation of 3d, 4d, and 5d 13-atom metal clusters. Phys Rev B 81:155446–155459

    Article  CAS  Google Scholar 

  39. Piotrowski MJ, Piquini P, Odashima MM, DaSilva JLF (2011) Transition-metal 13-atom clusterts assessed with solid and surface-biased functionals. J Chem Phys 134:134105–134110

    Article  CAS  PubMed  Google Scholar 

  40. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:270

    Article  CAS  Google Scholar 

  41. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:284

    Google Scholar 

  42. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299

    Article  CAS  Google Scholar 

  43. Wood JH, Boring AM (1978) Improved Pauli Hamiltonian for local-potential problems. Phys Rev B 18:2701

    Article  CAS  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1996) General gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1997) General gradient approximation made simple [Phys Rev Lett 77:4884(1996)] Phys Rev Lett 78:1396

    Google Scholar 

  46. Peng C, Ayala PY, Schelegel HB, Frish MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49

    Article  CAS  Google Scholar 

  47. Peng C, Schelegel HB (1994) Combining synchronous transit and quasi-Newton methods to find transit states. Israel J Chem 33:449

    Article  Google Scholar 

  48. Beltrán MR, Buendía Zamudío F, Chanhan V, Sen P, Wang H, Ko YJ, Bowen K (2013) Ab initio and anion photoelectron studies of Rhn (n = 1-9) clusters. Eur Phys J D 67:63–70

    Article  CAS  Google Scholar 

  49. Bertin V, Lopez-Rendón R, del Angel G, Poulain E, Avilés R, Uc-Rosas V (2010) Comparative theoretical study of small Rhn nanoparticles (2 ≤ n ≤ 8) using DFT methods. Int J Quantum Chem 110:1152–1164

    CAS  Google Scholar 

  50. Harding DJ, Davies RDL, Mackenzie SR, Walsh TR (2008) Oxides of small rhodium clusters: theoretical investigation of experimental reactivities. J Chem Phys 129:124304–124310

    Article  CAS  PubMed  Google Scholar 

  51. Mora MA, Mora-Ramírez MA, Rubio-Arroyo Manuel F (2010) Structural and electronic study of neutral, positive and negative small rhodium clusters [Rhn, Rh +n , Rh -n ]. Int J Quantum Chem 110:2541–2547

    CAS  Google Scholar 

  52. Li ZQ, Yu JZ, Ohno K, Kawazoe Y (1999) Calculations on the magnetic properties of rhodium clusters. J Phys Condens Matter 7:47–53

    Article  Google Scholar 

  53. Hang TD, Hung HM, Thiem LN, Nguyen HMT (2015) Electronic structure and thermochemical properties of neutral and anionic rhodium clusters Rhn, n = 2-13. Evolution of structures and stabilities of binary clusters RhmM (M = Fe Co, Ni; m = 1-6). Comput Theor Chem 1068:30–41

    Article  CAS  Google Scholar 

  54. Chien CH, Blaisten-Barojas E, Pedersen MR (1998) Magnetic and electronic properties of rhodium clusters. Phys Rev A 58:2196–2202

    Article  CAS  Google Scholar 

  55. Harding D, Mackenzie SR, Walsh TR (2006) Structural isomers and reactivity for Rh6, Rh +6 . J Phys Chem B 110:18272–18277

    Article  CAS  PubMed  Google Scholar 

  56. Da Silva JLF, Piotrowski MJ, Aguilera-Granja F (2012) Phys Rev B 86:125430–125435

    Article  CAS  Google Scholar 

  57. Sun Y, Fournier R, Zhang M (2009) Structural and electronic properties of 13-atom 4d transition-metal clusters. Phys Rev B 79:043202–043211

    Article  CAS  Google Scholar 

  58. Lee C, Yang W, Parr RG (1988) Development Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  59. Miehlich B, Sabin A, Stoll H, Preus H (1989) Results obtained with the correlation energy density functional of Becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  60. Futschek T, Marsman M, Hafner J (2005) Structural and magnetic isomers of small Pd and Rh clusters: an ab initio functional study. J Phys Condens Matter 17:5927–5963

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mora, M.A., Mora-Ramírez, M.A. (2018). Small Rhodium Clusters: A HF and DFT Study–III. In: Wang, Y., Thachuk, M., Krems, R., Maruani, J. (eds) Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-74582-4_12

Download citation

Publish with us

Policies and ethics