Skip to main content

Anti-Diabetic Effect of Fruits on Different Animal Model System

  • Chapter
  • First Online:
Book cover Bioorganic Phase in Natural Food: An Overview

Abstract

Fruits have important bioactive and dietary components ingredients of our everyday life that plays a major role to cure diseases. Inadequate intake of antioxidant and improved reactive oxygen species is associated with diabetes mellitus. Many of the components were proved to be succeeding to treat several chronic diseases like cancer, cardiovascular, obesity, and diabetes. Fruits which have listed here have dietary fiber which reduces diabetes and cardiac and other diseases also. Fruits like Momordica cymbalaria, Pongamia pinnata, Diospyros peregrina, Xylopia aethiopica, Ficus deltoidea, Prunus avium, Trapa natans, Terminalia pallida and Punica granatum. The fruit aqueous extract of Momordica cymbalaria exposed significant antihyperlipidemic as well as antihyperglycemic administered orally at 0.5 g/kg for six weeks by alloxan-induced diabetic rats. In Pongamia pinnata fruits, compounds called pongamal and karanjin was administered using streptozotocin diabetic rats which decreases the blood glucose level at the dosage of 50 mg/kg for 11.7 and 12.8%, 20.7% at 100 mg/kg individually post oral administration of six hours. An edible fruit of Diospyros peregrina streptozotocin-nicotinamide induced type 2 diabetes was achieved in aqueous extract decreases the blood glucose level at the dosage of 50 and 100 mg/kg body weight for twenty-eight days. Xylopia aethiopica acetone fraction of ethanol extract was investigated for type 2 diabetes. Streptozotocin was induced by single intraperitoneal injection and animals were treated orally at the dosage of 150 or 300 mg/kg body weight for 4 weeks reduces blood glucose level. Ficus deltoidea fruit was carried out with crude aqueous extract and fractions were estimated for sugars, phenol, protein and flavonoid content. Antidiabetic activity was carried out in water fraction using alpha-glucosidase assay reveals the highest amount of protein 73.33 ± 4.99 μg/mg. Ethanol extract (200 mg/kg) of Prunus avium fruit was administered orally by single intraperitoneal injection using alloxan induced (120 mg/kg) rats which decrease blood glucose level. Trapa natans fruit peel of methanol extract was evaluated for antidiabetic activity by streptozotocin (100 and 200 mg/ kg body weight) induced a diabetic rat which decreases blood glucose level. Terminalia pallida ethanol fruit extract was given intraperitoneal injection using alloxan (150 mg/kg body weight) monohydrate induced for diabetic rats model. Blood glucose levels were significant to at the dosage of 0.5 g/kg body weight. The aqueous ethanol extract of Punica granatum juice sugar for diabetic rats for ten days. Significantly reduces the blood sugar level, total peroxide level, and peritoneal macrophages. The aim of this book chapter reveals that fruit is considered as one of the important dietary ingredients. It has a vital significant role to control and to treat type 1 and type 2 diabetes mellitus. Henceforth, encouraging adherence of mentioned fruits was considerable significance to public health.

Equal contribution to corresponding authors, Immanuel Selvaraj C. and Abilash V. G.

Equal contribution to first authors, Papitha R. and Kaviyarasi Renu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah Z, Hussain K, Zhari I, Rasadah MA, Mazura P, Jamaludin F, Sahdan R (2009) Evaluation of extracts of leaf of three Ficus deltoidea varieties for antioxidant activities and secondary metabolites. Pharmacogn Res 1:216

    Google Scholar 

  • Adam Z, Hamid M, Ismail A, Khamis S (2007) Effect of Ficus deltoidea aqueous extract on blood glucose level in normal and mild diabetic rats. Malaysian. J Health Sci 5:9–16

    Google Scholar 

  • Adam Z, Ismail A, Khamis S, Mokhtar MHM, Hamid M (2011) Antihyperglycemic activity of F. deltoidea ethanolic extract in normal rats. Sains Malaysiana 40:489–495

    Google Scholar 

  • Adam Z, Khamis S, Ismail A, Hamid M (2012) Ficus deltoidea: a potential alternative medicine for diabetes mellitus. Evid Based Complement Alternat Med 2012:1

    Article  Google Scholar 

  • Allen O, Allen E (1981) Leguminosae. The University of Wisconsin Press, p 812

    Google Scholar 

  • Almind K, Kahn CR (2004) Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. Diabetes 53:3274–3285

    Article  CAS  PubMed  Google Scholar 

  • Al-Said F, La O, Al-Yahyai R (2009) Physico-chemical and textural quality attributes of pomegranate cultivars (Punica granatum L.) grown in the Sultanate of Oman. J Food Eng 90:129–134

    Article  Google Scholar 

  • Aminudin N, Sin CY, Chee ES, Nee KI, Renxin L (1970) Blood glucose lowering effect of Ficus deltoidea aqueous extract. Malays J Sci 26

    Google Scholar 

  • Anjaria J, Parabia M, Bhatt G, Khamar R (2002a) Nature heals, a glossary of selected indigenous medicinal plants of India. SRISTI Innovations, Ahmedabad

    Google Scholar 

  • Anjaria J, Parabia M, Dwivedi S (2002b) Ethnovet heritage–Indian Ethnoveterinary medicine an overview. Pathik Enterprise, Ahmedabad

    Google Scholar 

  • Anupama N, Madhumitha G, Rajesh KS (2014) Role of dried fruits of as anti-inflammatory agents and the analysis of phytochemical constituents by GC-MS. Biomed Res Int 2014:1–6

    Google Scholar 

  • Asif M (2011) The role of fruits, vegetables, and spices in diabetes. Int J Nutr Pharmacol Neurol Dis 1:27

    Article  Google Scholar 

  • Association AD (2004) American Diabetes Association: gestational diabetes mellitus (position statement). Diabetes Care 27:S88–S90

    Article  Google Scholar 

  • Atkinson MA, Leiter EH (1999) The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 5:601

    Article  CAS  PubMed  Google Scholar 

  • Aviram M, Dornfeld L, Kaplan M, Coleman R, Gaitini D, Nitecki S, Hofman A, Rosenblat M, Volkova N, Presser D (2002) Pomegranate juice flavonoids inhibit low-density lipoprotein oxidation and cardiovascular diseases: studies in atherosclerotic mice and in humans. Drugs Exp Clin Res 28:49–62

    CAS  PubMed  Google Scholar 

  • Babio N, Bulló M, Salas-Salvadó J (2009) Mediterranean diet and metabolic syndrome: the evidence. Public Health Nutr 12:1607–1617

    Article  PubMed  Google Scholar 

  • Baliga MS, Bhat HP, Pai RJ, Boloor R, Palatty PL (2011) The chemistry and medicinal uses of the underutilized Indian fruit tree Garcinia Indica Choisy (kokum): a review. Food Res Int 44:1790–1799

    Article  CAS  Google Scholar 

  • Bansal R, Ahmad N, Kidwai JR (1980) Alloxan-glucose interaction: effect on incorporation of 14 C-leucine into pancreatic islets of rat. Acta Diabetol 17:135–143

    Article  CAS  Google Scholar 

  • Barker JM (2006) Type 1 diabetes-associated autoimmunity: natural history, genetic associations, and screening. J Clin Endocrinol Metabol 91:1210–1217

    Article  CAS  Google Scholar 

  • Berg C (2003) Flora Malesiana precursor for the treatment of Moraceae 3: Ficus subgenus Ficus. Blumea-Biodiversity Evol Biogeo Plants 48:529–550

    Article  Google Scholar 

  • Bödvarsdóttir T, Hove K, Gotfredsen C, Pridal L, Vaag A, Karlsen A, Petersen J (2010) Treatment with a proton pump inhibitor improves glycaemic control in Psammomys Obesus, a model of type 2 diabetes. Diabetologia 53:2220–2223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonnevie-Nielsen V, Steffes MW, Lernmark Å (1981) A major loss in islet mass and B-cell function precedes hyperglycemia in mice given multiple low doses of streptozotocin. Diabetes 30:424–429

    Article  CAS  PubMed  Google Scholar 

  • Buck DW, Jin DP, Geringer M, Hong SJ, Galiano RD, Mustoe TA (2011) The TallyHo polygenic mouse model of diabetes: implications in wound healing. Plast Reconstr Surg 128:427e–437e

    Article  PubMed  CAS  Google Scholar 

  • Cefalu WT (2006) Animal models of type 2 diabetes: clinical presentation and pathophysiological relevance to the human condition. ILAR J 47:186–198

    Article  CAS  PubMed  Google Scholar 

  • Ceylan-Isik AF, Fliethman RM, Wold LE, Ren J (2008) Herbal and traditional Chinese medicine for the treatment of cardiovascular complications in diabetes mellitus. Curr Diabetes Rev 4:320–328

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty G, Thumpayil S, Lafontant DE, Woubneh W, Toney JH (2009) Age dependence of glucose tolerance in adult KK-ay mice, a model of non-insulin dependent diabetes mellitus. Lab Anim 38:364

    Article  Google Scholar 

  • Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E (2009) The use of animal models in the study of diabetes mellitus. In Vivo 23:245–258

    CAS  PubMed  Google Scholar 

  • Chehab FF, Lim ME, Lu R (1996) Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet 12:318–320

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, More KJ, Breitbart RE (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zheng C, Zhang X, Li J, Li J, Zheng L, Huang K (2011) Apelin alleviates diabetes-associated endoplasmic reticulum stress in the pancreas of Akita mice. Peptides 32:1634–1639

    Article  CAS  PubMed  Google Scholar 

  • Cho YR, Kim HJ, Park SY, Ko HJ, Hong EG, Higashimori T, Zhang Z, Jung DY, Ola MS, LaNoue KF (2007) Hyperglycemia, maturity-onset obesity, and insulin resistance in NONcNZO10/LtJ males, a new mouse model of type 2 diabetes. Am J Physiol Endocrinol Metab 293:E327–E336

    Article  CAS  PubMed  Google Scholar 

  • Choo C, Sulong N, Man F, Wong T (2012) Vitexin and isovitexin from the leaves of Ficus Deltoidea with in-vivo α-glucosidase inhibition. J Ethnopharmacol 142:776–781

    Article  CAS  PubMed  Google Scholar 

  • Chopra RN, Nayar SL, Chopra IC (1956) Glossary of Indian medicinal plants. C SIR, New Delhi

    Google Scholar 

  • Claridge M, Wilson M (1982) Insect herbivore guilds and species—area relationships: leafminers on British trees. Ecol Entomol 7:19–30

    Article  Google Scholar 

  • Clee SM, Attie AD (2007) The genetic landscape of type 2 diabetes in mice. Endocr Rev 28:48–83

    Article  CAS  PubMed  Google Scholar 

  • Coleman DL (1978) Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14:141–148

    Article  CAS  PubMed  Google Scholar 

  • Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet 378:31–40

    Article  CAS  PubMed  Google Scholar 

  • Das AK, Mandal SC, Banerjee SK, Sinha S, Saha B, Pal M (2001) Studies on the hypoglycaemic activity of Punica granatum seed in streptozotocin induced diabetic rats. Phytother Res 15:628–629

    Article  CAS  PubMed  Google Scholar 

  • Databases GT (2009) USDA, ARS, National genetic resources program. Germplasm Resources Information Network (GRIN)[online database], National Germplasm Resources Laboratory, Beltsville, Maryland

    Google Scholar 

  • Deeds M, Anderson J, Armstrong A, Gastineau D, Hiddinga H, Jahangir A, Eberhardt NL, Kudva YC (2011) Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models. Lab Anim 45:131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diallo A, Traore MS, Keita SM, Balde MA, Keita A, Camara M, Van Miert S, Pieters L, Balde AM (2012) Management of diabetes in Guinean traditional medicine: an ethnobotanical investigation in the coastal lowlands. J Ethnopharmacol 144:353–361

    Article  PubMed  Google Scholar 

  • Dièye AM, Sarr A, Diop SN, Ndiaye M, Sy GY, Diarra M, Faye B (2008) Medicinal plants and the treatment of diabetes in Senegal: survey with patients. Fundam Clin Pharmacol 22:211–216

    Article  PubMed  CAS  Google Scholar 

  • Drel VR, Pacher P, Stavniichuk R, Xu W, Zhang J, Kuchmerovska TM, Slusher B, Obrosova IG (2011) Poly (ADP-ribose) polymerase inhibition counteracts renal hypertrophy and multiple manifestations of peripheral neuropathy in diabetic Akita mice. Int J Mol Med 28:629–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dufrane D, Van Steenberghe M, Guiot Y, Goebbels RM, Saliez A, Gianello P (2006) Streptozotocin-induced diabetes in large animals (pigs/primates): role of GLUT2 transporter and β-cell plasticity. Transplantation 81:36–45

    Article  CAS  PubMed  Google Scholar 

  • Ellerman KE, Richards CA, Guberski DL, Shek WR, Like AA (1996) Kilham rat virus triggers T-cell–dependent autoimmune diabetes in multiple strains of rat. Diabetes 45:557–562

    Article  CAS  PubMed  Google Scholar 

  • Esekhiagbe M, Agatemor MMU, Agatemor C (2009) Phenolic content and antimicrobial potentials of Xylopia aethiopica and Myristica argentea. Maced J Chem Chem Eng 28:159–162

    CAS  Google Scholar 

  • Etuk E (2010) Animals models for studying diabetes mellitus. Agric Biol J N Am 1:130–134

    CAS  Google Scholar 

  • Fatimah Z, Mahmood A, Hapipah M, Suzita M, Salmah I (2009) Anti-ulcerogenic activity of aqueous extract of Ficus deltoidea against ethanol-induced gastric mucosal injury in rats. Res J Med Sci 3:42–46

    Google Scholar 

  • Fernandes NP, Lagishetty CV, Panda VS, Naik SR (2007) An experimental evaluation of the antidiabetic and antilipidemic properties of a standardized Momordica Charantia fruit extract. BMC Complement Altern Med 7(29)

    Google Scholar 

  • Fernando MM, Stevens CR, Walsh EC, De Jager PL, Goyette P, Plenge RM, Vyse TJ, Rioux JD (2008) Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet 4:e1000024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foltran F, Verduci E, Ghidina M, Campoy C, Jany KD, Widhalm K, Biasucci G, Vögele C, Halpern GM, Gregori D (2010) Nutritional profiles in a public health perspective: a critical review. J Int Med Res 38:318–385

    Article  CAS  PubMed  Google Scholar 

  • Fowsiya J, Madhumitha G (2017) Preliminary phytochemical analysis, antioxidant and cytotoxicity test of Carissa edulis Vahl dried fruits. IOP Conf. Series: Materials Science and Engineering. 263(2017):022018. https://doi.org/10.1088/1757-899X/263/2/022018.1-16

    Article  Google Scholar 

  • Freiesleben SH, Soelberg J, Jäger AK (2015) Medicinal plants used as excipients in the history in Ghanaian herbal medicine. J Ethnopharmacol 174:561–568

    Article  PubMed  Google Scholar 

  • Gault VA, Kerr BD, Harriott P, Flatt PR (2011) Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with type 2 diabetes and obesity. Clin Sci 121:107–117

    Article  CAS  PubMed  Google Scholar 

  • Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA (2000) Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 48:4581–4589

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Kakizaki M, Masaki N (1976) Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med 119:85–90

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Mazumder U, Manikandan L, Bhattacharya S, Senthilkumar G, Suresh R (2005) Anti-ulcer activity of ethanol extract of Terminaliapallida Brandis. In Swiss albino rats. J Ethnopharmacol 97:405–408

    Article  CAS  PubMed  Google Scholar 

  • Hakiman M, Maziah M (2009) Non enzymatic and enzymatic antioxidant activities in aqueous extract of different Ficus Deltoidea accessions. J Med Plants Res 3:120–131

    Google Scholar 

  • Hanafusa T, Ji M, Nakajima H, Tomita K, Kuwajima M, Matsuzawa Y, Tarui S (1994) The NOD mouse. Diabetes Res Clin Pract 24:S307–S311

    Article  PubMed  Google Scholar 

  • Harada N, Onaka M, Sakamoto S, Niwa Y, Nakaya Y (1999) Cilnidipine improves insulin sensitivity in the Otsuka long-Evans Tokushima fatty rat, a model of spontaneous NIDDM. Cardiovasc. Drugs Ther 13:519–523

    CAS  Google Scholar 

  • Haskell BD, Flurkey K, Duffy TM, Sargent EE, Leiter EH (2002) The diabetes-prone NZO/HlLt strain. I. Immunophenotypic comparison to the related NZB/BlNJ and NZW/LacJ strains. Lab Investig 82:833

    Article  PubMed  Google Scholar 

  • Hemalatha K, Madhumitha G, Kajbafvala A, Anupama N, Sompalle R, Roopan SM (2013) Function of nanocatalyst in chemistry of organic compounds revolution: an overview. J Nanomater 2013:1–23

    Google Scholar 

  • Hemalatha K, Madhumitha G, Vasavi CS, Munusami P (2015) 2,3-Dihydroquinazolin-4(1H)-ones: visible light mediated synthesis, solvatochromism and biological activity. J Photochem  Photobiol B: Biol 143:139–147

    Article  CAS  Google Scholar 

  • Höppener JW, Jansz HS, Oosterwijk C, Van Hulst KL, Lips CJ, Verbeek JS, Capel PJ, de Koning EJ, Clark A (1994) Molecular physiology of the islet amyloid polypeptide (IAPP)/amylin gene in man, rat, and transgenic mice. J Cell Biochem 55:39–53

    Article  PubMed  Google Scholar 

  • Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J (2003) Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs. Diabetes 52:1052–1055

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H (1994) KK mouse. Diabetes Res Clin Pract 24:S313–S316

    Article  PubMed  Google Scholar 

  • Im Walde SS, Dohle C, Schott-Ohly P, Gleichmann H (2002) Molecular target structures in alloxan-induced diabetes in mice. Life Sci 71:1681–1694

    Article  PubMed  Google Scholar 

  • Iwu MM (2014) Handbook of African medicinal plants. CRC press, Boca Raton

    Book  Google Scholar 

  • Jafri M, Aslam M, Javed K, Singh S (2000) Effect of Punica granatum Linn.(flowers) on blood glucose level in normal and alloxan-induced diabetic rats. J Ethnopharmacol 70:309–314

    Article  CAS  PubMed  Google Scholar 

  • Jaidane H, Sane F, Gharbi J, Aouni M, Romond M, Hober D (2009) Coxsackievirus B4 and type 1 diabetes pathogenesis: contribution of animal models. Diabetes Metab Res Rev 25:591–603

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Yadava R (1994) Peregrinol, a lupane type triterpene from the fruits of Diospyros peregrina. Phytochemistry 35:1070–1072

    Article  CAS  Google Scholar 

  • Jain N, Yadava RN (1997) Furano-(2″, 3″, 7, 8)-3', 5'-Dimethoxy-5-Hydroxyflavone: a new Furanoflavone from the fruits of Diospyros peregrina Gurka. Asian J Chem 9:442

    CAS  Google Scholar 

  • Jederström G, Nordin A, Sjöholm I, Andersson A (2005) Blood glucose-lowering activity of a hyaluronan–insulin complex after oral administration to rats with diabetes. Diabetes Technol Ther 7:948–957

    Article  PubMed  Google Scholar 

  • Johanningsmeier SD, Harris GK (2011) Pomegranate as a functional food and nutraceutical source. Annu Rev Food Sci Technol 2:181–201

    Article  CAS  PubMed  Google Scholar 

  • Jörns A, Günther A, Hedrich HJ, Wedekind D, Tiedge M, Lenzen S (2005) Immune cell infiltration, cytokine expression, and β-cell apoptosis during the development of type 1 diabetes in the spontaneously diabetic LEW. 1AR1/Ztm-iddm rat. Diabetes 54:2041–2052

    Article  PubMed  Google Scholar 

  • Joshi VK, Joshi A, Dhiman KS (2017) The Ayurvedic pharmacopoeia of India, development and perspectives. J Ethnopharmacol 197:32–38

    Article  PubMed  Google Scholar 

  • Jun HS, Yoon JW (2004) A new look at viruses in type 1 diabetes. ILAR J 45:349–374

    Article  CAS  Google Scholar 

  • Jurenka J (2008) Therapeutic applications of pomegranate (Punica Granatum L.): a review. Altern Med Rev 13:128

    PubMed  Google Scholar 

  • Karou SD, Tchacondo T, Djikpo Tchibozo MA, Abdoul-Rahaman S, Anani K, Koudouvo K, Batawila K, Agbonon A, Simpore J, de Souza C (2011) Ethnobotanical study of medicinal plants used in the management of diabetes mellitus and hypertension in the central region of Togo. Pharm Biol 49:1286–1297

    Article  PubMed  Google Scholar 

  • Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T (1991) New inbred strain of long-Evans Tokushima lean rats with IDDM without lymphopenia. Diabetes 40:1375–1381

    Article  CAS  PubMed  Google Scholar 

  • Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T (1992) Spontaneous long-term hyperglycemic rat with diabetic complications: Otsuka long-Evans Tokushima fatty (OLETF) strain. Diabetes 41:1422–1428

    Article  CAS  PubMed  Google Scholar 

  • Kawano K, Hirashima T, Mori S, Natori T (1994) OLETF (Otsuka long-Evans Tokushima fatty) rat: a new NIDDM rat strain. Diabetes Res Clin Pract 24:S317–S320

    Article  PubMed  Google Scholar 

  • Kim HR, Rho HW, Park BH, Park JW, Kim JS, Kim UH, Chung MY (1994) Role of Ca2+ in alloxan-induced pancreatic β-cell damage. Biochim Biophys Acta Mol Basis Dis 1227:87–91

    Article  CAS  Google Scholar 

  • Kim C, Newton KM, Knopp RH (2002) Gestational diabetes and the incidence of type 2 diabetes. Diabetes Care 25:1862–1868

    Article  PubMed  Google Scholar 

  • Kim JH, Stewart TP, Zhang W, Kim HY, Nishina PM, Naggert JK (2005) Type 2 diabetes mouse model TallyHo carries an obesity gene on chromosome 6 that exaggerates dietary obesity. Physiol Genomics 22:171–181

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, JB J, Choi CW, Kim SC (2006) Hypoglycemic and antihyperlipidemic effect of four Korean medicinal plants in alloxan induced diabetic rats. Am J Biochem Biotech 2:154–160

    Article  Google Scholar 

  • King AJ (2012) The use of animal models in diabetes research. Br J Pharmacol 166:877–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirtikar K, Basu B (1975) Indian medicinal plants, vol 2. Bishen Singh Mahandra Pal Singh, Dehra Dun, pp 2327–2328

    Google Scholar 

  • Kirtikar K, Basu B (1999) Indian medicinal plants, vol 3. International Book Distributors, Dehradun, pp 2262–2263

    Google Scholar 

  • Kluth O, Mirhashemi F, Scherneck S, Kaiser D, Kluge R, Neschen S, Joost HG, Schürmann A (2011) Dissociation of lipotoxicity and glucotoxicity in a mouse model of obesity associated diabetes: role of forkhead box O1 (FOXO1) in glucose-induced beta cell failure. Diabetologia 54:605–616

    Article  CAS  PubMed  Google Scholar 

  • Komeda K, Noda M, Terao K, Kuzuya N, Kanazawa M, Kanazawa Y (1998) Establishment of two substrains, diabetes-prone and non-diabetic, from long-Evans Tokushima lean (LETL) rats. Endocr J 45:737–744

    Article  CAS  PubMed  Google Scholar 

  • Konczak I, Zhang W (2004) Anthocyanins—more than nature’s colours. Biomed Res Int 2004:239–240

    Google Scholar 

  • Kosegawa I, Katayama S, Kikuchi C, Kashiwabara H, Negishi K, Ishii J, Inukai K, Oka Y (1996) Metformin decreases blood pressure and obesity in OLETF rats via improvement of insulin resistance. Hypertens Res 19:37–41

    Article  CAS  PubMed  Google Scholar 

  • Krueger DA (2012) Composition of pomegranate juice. J AOAC Int 95:163–168

    Article  CAS  PubMed  Google Scholar 

  • Kuete V, Krusche B, Youns M, Voukeng I, Fankam AG, Tankeo S, Lacmata S, Efferth T (2011) Cytotoxicity of some Cameroonian spices and selected medicinal plant extracts. J Ethnopharmacol 134:803–812

    Article  PubMed  Google Scholar 

  • Kuete V, Sandjo LP, Wiench B, Efferth T (2013) Cytotoxicity and modes of action of four Cameroonian dietary spices ethno-medically used to treat cancers: Echinops giganteus, Xylopia aethiopica, Imperata cylindrica and Piper capense. J Ethnopharmacol 149:245–253

    Article  PubMed  Google Scholar 

  • Laloo R, Kharlukhi L, Jeeva S, Mishra B (2006) Status of medicinal plants in the disturbed and the undisturbed sacred forests of Meghalaya, northeast India: population structure and regeneration efficacy of some important species. Curr Sci 90:225–232

    Google Scholar 

  • Lebovitz HE, Banerji MA (2004) Treatment of insulin resistance in diabetes mellitus. Eur J Pharmacol 490:135–146

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Yang SH, JM O, Lee MG (2010) Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus. J Pharm Pharmacol 62:1–23

    Article  CAS  PubMed  Google Scholar 

  • Lehtovirta M, Pietiläinen K, Levälahti E, Heikkilä K, Groop L, Silventoinen K, Koskenvuo M, Kaprio J (2010) Evidence that BMI and type 2 diabetes share only a minor fraction of genetic variance: a follow-up study of 23,585 monozygotic and dizygotic twins from the Finnish twin cohort study. Diabetologia 53:1314–1321

    Article  CAS  PubMed  Google Scholar 

  • Leiter EH (2009) Selecting the “right” mouse model for metabolic syndrome and type 2 diabetes research. Type 2 diabetes: methods and protocols 1–17

    Google Scholar 

  • Leiter EH, Reifsnyder PC (2004) Differential levels of diabetogenic stress in two new mouse models of obesity and type 2 diabetes. Diabetes 53:S4–S11

    Article  CAS  PubMed  Google Scholar 

  • Lenzen S, Munday R (1991) Thiol-group reactivity, hydrophilicity and stability of alloxan, its reduction products and its N-methyl derivatives and a comparison with ninhydrin. Biochem Pharmacol 42:1385–1391

    Article  CAS  PubMed  Google Scholar 

  • Lenzen S, Tiedge M, Elsner M, Lortz S, Weiss H, Jörns A, Klöppel G, Wedekind D, Prokop CM, Hedrich H (2001) The LEW. 1AR1/Ztm-iddm rat: a new model of spontaneous insulin-dependent diabetes mellitus. Diabetologia 44:1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Lewis W, Elvin Lewis M (1977) Medical botany. Plants affecting man’s health. xviii+ 516pp. illustr. Ex. Science 196:1238

    Google Scholar 

  • Like AA, Rossini AA (1976) Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193:415–417

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Sun Z (2010) Current views on type 2 diabetes. J Endocrinol 204:1–11

    Article  CAS  PubMed  Google Scholar 

  • Lindström P (2007) The physiology of obese-hyperglycemic mice [ob/ob mice]. Sci World J 7:666–685

    Article  CAS  Google Scholar 

  • Liu H, Qiu N, Ding H, Yao R (2008) Polyphenols contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses. Food Res Int 41:363–370

    Article  CAS  Google Scholar 

  • Lukic ML, Stošic-Grujicic S, Shahin A (1998) Effector mechanisms in low-dose streptozotocin-induced diabetes. J Immunol Res 6:119–128

    CAS  Google Scholar 

  • Lukivskaya O, Lis R, Egorov A, Naruta E, Tauschel HD, Buko VU (2004) The protective effect of ursodeoxycholic acid in alloxan-induced diabetes. Cell Biochem Funct 22:97–103

    Article  CAS  PubMed  Google Scholar 

  • Madhumitha G, Saral AM (2009) Free radical scavenging assay of thevetia nerüfolia leaf extracts. Asian J Chem 21:2468–2470

    Google Scholar 

  • Mandal B, Maity C (1986) Hypoglycemic action of karanjin. Acta Physiol Pharmacol Bulg 12:42–46

    CAS  PubMed  Google Scholar 

  • Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, Novelli M, Ribes G (1998) Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47:224–229

    Article  CAS  PubMed  Google Scholar 

  • Mathews CE, Langley SH, Leiter EH (2002) New mouse model to study islet transplantation in insulin-dependent diabetes mellitus. Transplantation 73:1333–1336

    Article  CAS  PubMed  Google Scholar 

  • Mathis D, Vence L, Benoist C (2001) β-cell death during progression to diabetes. Nature 414:792–798

    Article  CAS  PubMed  Google Scholar 

  • Matveyenko AV, Butler PC (2006) Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. ILAR J 47:225–233

    Article  CAS  PubMed  Google Scholar 

  • Meera B, Kumar S, Kalidhar S (2003) A review of the chemistry and biological activity of Pongamia pinnata. J Med Aromat Plant Sci 2003:441–465

    Google Scholar 

  • Mirunalini S, Krishnaveni M (2010) Therapeutic potential of Phyllanthus emblica (amla): the ayurvedic wonder. J Basic Clin Physiol Pharmacol 21:93–105

    Article  PubMed  Google Scholar 

  • Misra P, Misra G, Nigam S, Mitra C (1971) Constituents of Diospyros peregrina fruit and seed. Phytochemistry 10:904–905

    Article  CAS  Google Scholar 

  • Mitchell A (1974) A field guide to the trees of Britain and northern Europe. Collins, London. 0-00-212035-6

    Google Scholar 

  • Mordes JP, Bortell R, Blankenhorn EP, Rossini AA, Greiner DL (2004) Rat models of type 1 diabetes: genetics, environment, and autoimmunity. ILAR J 45:278–291

    Article  CAS  PubMed  Google Scholar 

  • Muller YD, Golshayan D, Ehirchiou D, Wyss JC, Giovannoni L, Meier R, Serre-Beinier V, Yung GP, Morel P, Bühler LH (2011) Immunosuppressive effects of streptozotocin-induced diabetes result in absolute lymphopenia and a relative increase of T regulatory cells. Diabetes 60:2331–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaraju K (1992) Biochemical studies on some medicinal plants of Rayalaseema region

    Google Scholar 

  • Nagaraju N, Rao K (1989) Folk–medicine for diabetes from rayalaseema of andhra pradesh. Anc Sci Life 9:31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nerup J, Mandrap-Poulsen T, Helqvist S, Andersen H, Pociot F, Reimers J, Cuartero B, Karlsen A, Bjerre U, Lorenzen T (1994) On the pathogenesis of IDDM. Diabetologia 37:S82–S89

    Article  PubMed  Google Scholar 

  • Noda K, Melhorn MI, Zandi S, Frimmel S, Tayyari F, Hisatomi T, Almulki L, Pronczuk A, Hayes K, Hafezi-Moghadam A (2010) An animal model of spontaneous metabolic syndrome: Nile grass rat. FASEB J 24:2443–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nwangwa EK (2012) Antifertility effects of ethanolic extract of Xylopia Aethiopica on male reproductive organ of wistar rats. Am J Med Sci 2:12–15

    Google Scholar 

  • Nwozo SO, Orojobi BF, Adaramoye OA (2011) Hypolipidemic and antioxidant potentials of Xylopia aethiopica seed extract in hypercholesterolemic rats. J Med Food 14:114–119

    Article  PubMed  Google Scholar 

  • O’Connell BS (2001) Complementary and integrative medicine: emerging therapies for diabetes, part 2: preface. Diabetes Spectr 14:196–197

    Article  Google Scholar 

  • Oh MJ, Hamid MA, Ngadiran S, Seo YK, Sarmidi MR, Park CS (2011) Ficus deltoidea (Mas cotek) extract exerted anti-melanogenic activity by preventing tyrosinase activity in vitro and by suppressing tyrosinase gene expression in B16F1 melanoma cells. Arch Dermatol Res 303:161–170

    Article  PubMed  Google Scholar 

  • Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) Agroforestree database: a tree species reference and selection guide version 4.0. World Agroforestry Centre ICRAF, Nairobi

    Google Scholar 

  • Osinubi A, Enye L, Adesiyun A, Ajayi G (2008) Comparative effects of three herbs and standard hypoglycaemic agents on blood glucose in normoglycaemic, hyperglycaemic and alloxan-induced diabetic male rats. Afr J Endocrinol Metab 7:5–9

    Google Scholar 

  • Östenson CG, Efendic S (2007) Islet gene expression and function in type 2 diabetes; studies in the Goto-Kakizaki rat and humans. Diabetes Obes Metab 9:180–186

    Article  PubMed  CAS  Google Scholar 

  • Palani S, Raja S, Venkadesan D, Karthi S, Sakthivel K, Kumar BS (2009) Antioxidant activity and hepatoprotective potential of Terminalia Pallida. Arch Appl Sci Res 1:18–28

    CAS  Google Scholar 

  • Panda SK, Kbaliquzzama M, Agrahari AK (2010) Evaluation of psychopharmacological activity of methanolic extract of Trapa Natans L. Var. Bispinosa Roxb. Roots. Adv. Pharmacol Toxicol 11:71

    Google Scholar 

  • Parekh J, Chanda S (2007) In vitro antimicrobial activity of Trapa Natans L. fruit rind extracted in different solvents. Afr J Biotechnol 6

    Google Scholar 

  • Parekh J, Chanda S (2008) In vitro antifungal activity of methanol extracts of some Indian medicinal plants against pathogenic yeast and moulds. Afr J Biotechnol 7:4349–4353

    Google Scholar 

  • Parvathi S, Kumar V (2002) Studies on chemical composition and utilization of the wild edible vegetable athalakkai (Momordica Tuberosa). Plant Foods Hum Nutr 57:215–222

    Article  CAS  PubMed  Google Scholar 

  • Patel R, Shervington A, Pariente JA, MARTINEZ-BURGOS MA, Salido GM, Adeghate E, Singh J (2006) Mechanism of exocrine pancreatic insufficiency in Streptozotocin-induced type 1 diabetes mellitus. Ann N Y Acad Sci 1084:71–88

    Article  CAS  PubMed  Google Scholar 

  • Patterson CC, Dahlquist GG, Gyürüs E, Green A, Soltész G, Group ES (2009) Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 373:2027–2033

    Article  PubMed  Google Scholar 

  • Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CT, Hess JF (1996) Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13:18–19

    Article  CAS  PubMed  Google Scholar 

  • Pick A, Clark J, Kubstrup C, Levisetti M, Pugh W, Bonner-Weir S, Polonsky KS (1998) Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47:358–364

    Article  CAS  PubMed  Google Scholar 

  • Pinhas-Hamiel O, Zeitler P (2005) The global spread of type 2 diabetes mellitus in children and adolescents. J Pediatr 146:693–700

    Article  PubMed  Google Scholar 

  • Portha B, Giroix M, Serradas P, Gangnerau M, Movassat J, Rajas F, Bailbe D, Plachot C, Mithieux G, Marie J (2001) Beta-cell function and viability in the spontaneously diabetic GK rat: information from the GK/Par colony. Diabetes 50:S89

    Article  CAS  PubMed  Google Scholar 

  • Pozzilli P, Signore A, Williams AJ, Beales PE (1993) NOD mouse colonies around the world-recent facts and figures. Immunol Today 14:193–196

    Article  CAS  PubMed  Google Scholar 

  • Punitha R, Manoharan S (2006) Antihyperglycemic and antilipidperoxidative effects of Pongamia pinnata (Linn.) Pierre flowers in alloxan induced diabetic rats. J Ethnopharmacol 105:39–46

    Article  CAS  PubMed  Google Scholar 

  • Rai M (1995) A review on some antidiabetic plants of India. Anc Sci Life 14:168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao BK, Kesavulu M, Giri R, Rao CA (1999) Antidiabetic and hypolipidemic effects of Momordicacymbalaria Hook. fruit powder in alloxan-diabetic rats. J Ethnopharmacol 67:103–109

    Article  CAS  PubMed  Google Scholar 

  • Rao BK, Kesavulu M, Apparao C (2001) Antihyperglycemic activity of Momordica cymbalaria in alloxan diabetic rats. J Ethnopharmacol 78:67–71

    Article  CAS  PubMed  Google Scholar 

  • Rao BK, Sudarshan PR, Rajasekhar M, Nagaraju N, Rao CA (2003) Antidiabetic activity of Terminaliapallida fruit in alloxan induced diabetic rats. J Ethnopharmacol 85:169–172

    Article  Google Scholar 

  • Reaven GM (1988) Role of insulin resistance in human disease. Diabetes 37:1595–1607

    Article  CAS  PubMed  Google Scholar 

  • Richardson SJ, Willcox A, Bone A, Foulis AK, Morgan NG (2009) The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 52:1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Sandler S, Swenne I (1983) Streptozotocin, but not alloxan, induces DNA repair synthesis in mouse pancreatic islets in vitro. Diabetologia 25:444–447

    Article  CAS  PubMed  Google Scholar 

  • Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14

    Article  CAS  PubMed  Google Scholar 

  • Shibata T, Takeuchi S, Yokota S, Kakimoto K, Yonemori F, Wakitani K (2000) Effects of peroxisome proliferator-activated receptor-α and-γ agonist, JTT-501, on diabetic complications in Zucker diabetic fatty rats. Br J Pharmacol 130:495–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada A, Maruyama T (2004) Encephalomyocarditis-virus-induced diabetes model resembles “fulminant” type 1 diabetes in humans. Diabetologia 47:1854–1855

    Article  CAS  PubMed  Google Scholar 

  • Shirwaikar A, Rajendran K, Punitha I (2005) Antidiabetic activity of alcoholic stem extract of Coscinium fenestratum in streptozotocin-nicotinamide induced type 2 diabetic rats. J Ethnopharmacol 97:369–374

    Article  PubMed  Google Scholar 

  • Soladoye M, Chukwuma E, Owa F (2012) An ‘Avalanche’of plant species for the traditional cure of diabetes mellitus in south-western Nigeria. J Nat Prod Plant Resour 2:60–72

    Google Scholar 

  • Solomon TP, Sistrun SN, Krishnan RK, Del Aguila LF, Marchetti CM, O'Carroll SM, O'Leary VB, Kirwan JP (2008) Exercise and diet enhance fat oxidation and reduce insulin resistance in older obese adults. J Appl Physiol 104:1313–1319

    Article  PubMed  Google Scholar 

  • Song WJ, Shah R, Hussain MA (2010) The use of animal models to study stem cell therapies for diabetes mellitus. ILAR J 51:74–81

    Article  CAS  Google Scholar 

  • Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125:451

    CAS  PubMed  Google Scholar 

  • Srinivasan K, Viswanad B, Asrat L, Kaul C, Ramarao P (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52:313–320

    Article  CAS  PubMed  Google Scholar 

  • Sulaiman M, Hussain M, Zakaria Z, Somchit M, Moin S, Mohamad A, Israf D (2008) Evaluation of the antinociceptive activity of Ficus deltoidea aqueous extract. Fitoterapia 79:557–561

    Article  CAS  PubMed  Google Scholar 

  • Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:537–546

    CAS  PubMed  Google Scholar 

  • Taylor SI (1999) Deconstructing type 2 diabetes. Cell 97:9–12

    Article  CAS  PubMed  Google Scholar 

  • Thammanna NRK, Nagaraju N (1990) Medicinal plants of Tirumala. TTD publication, Tirupati, p 55

    Google Scholar 

  • Thammanna NRK, Rao KN, Chetty KM (1994) Angiospermic wealth of Tirumala. TTD Publication, Tirupati, p 19

    Google Scholar 

  • Thorburn A, Holdsworth A, Proietto J, Morahan G (2000) Differential and genetically separable associations of leptin with obesity-related traits. Int J Obes 24:742

    Article  CAS  Google Scholar 

  • Todd JA, Wicker LS (2001) Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models. Immunity 15:387–395

    Article  CAS  PubMed  Google Scholar 

  • Tripathi V, Verma J (2014) Different models used to induce diabetes: a comprehensive review. Int. J Pharm Sci 6:29–32

    Google Scholar 

  • Uwakwe A (2013) In vitro antisickling effects of Xylopia aethiopica and Monodora myristica. J Med Plants Res 2:119–124

    Google Scholar 

  • Vijayvargia R, Kumar M, Gupta S (2000) Hypoglycemic effect of aqueous extract of Enicostemma littorale Blume (chhota chirayata) on alloxan induced diabetes mellitus in rats. Indian J Exp Biol 38:781–784

    CAS  PubMed  Google Scholar 

  • Von Herrath M, Homann D, Gairin J, Oldstone M (1997) Pathogenesis and treatment of virus-induced autoimmune diabetes: novel insights gained from the RIP-LCMV transgenic mouse model. Biochem Soc Trans 25:630–635

    Article  Google Scholar 

  • Wang Z, Gleichmann H (1998) GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes 47:50–56

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wan R, Mo Y, Zhang Q, Sherwood LC, Chien S (2010) Creating a long-term diabetic rabbit model. Exp Diabetes Res 2010:289614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Rong X, Um IS, Yamahara J, Li Y (2012) 55-week treatment of mice with the unani and ayurvedic medicine pomegranate flower ameliorates ageing-associated insulin resistance and skin abnormalities. Evid Based Complement Alternat Med 2012:350125

    PubMed  Google Scholar 

  • Wang Y, Gd S, Sun J, Sj L, Wang J, Xu X, Ln M (2013) Spontaneous type 2 diabetic rodent models. J Diabetes Res 2013:401723

    PubMed  PubMed Central  Google Scholar 

  • Weir GC, Bonner-Weir S (2004) Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53:S16–S21

    Article  CAS  PubMed  Google Scholar 

  • Weir G, Marselli L, Marchetti P, Katsuta H, Jung M, Bonner-Weir S (2009) Towards better understanding of the contributions of overwork and glucotoxicity to the β-cell inadequacy of type 2 diabetes. Diabetes Obes Metab 11:82–90

    Article  CAS  PubMed  Google Scholar 

  • Wicker LS, Clark J, Fraser HI, Garner VE, Gonzalez-Munoz A, Healy B, Howlett S, Hunter K, Rainbow D, Rosa RL (2005) Type 1 diabetes genes and pathways shared by humans and NOD mice. J Autoimmun 25:29–33

    Article  CAS  PubMed  Google Scholar 

  • Wild SH, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030: response to Rathman and Giani. Diabetes Care 27:2569–2569

    Article  Google Scholar 

  • Winzell MS, Ahrén B (2004) The high-fat diet–fed mouse. Diabetes 53:S215–S219

    Article  PubMed  Google Scholar 

  • Yadav PP, Ahmad G, Maurya R (2004) Furanoflavonoids from Pongamia Pinnata fruits. Phytochemistry 65:439–443

    Article  CAS  PubMed  Google Scholar 

  • Yokoi N, Hayashi C, Fujiwara Y, Wang HY, Seino S (2007) Genetic reconstitution of autoimmune type 1 diabetes with two major susceptibility genes in the rat. Diabetes 56:506–512

    Article  CAS  PubMed  Google Scholar 

  • Yoon JW, Jun HS (2001) Cellular and molecular pathogenic mechanisms of insulin-dependent diabetes mellitus. Ann N Y Acad Sci 928:200–211

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Tanaka H, Oshima H, Yamazaki T, Yonetoku Y, Ohishi T, Matsui T, Shibasaki M (2010) AS1907417, a novel GPR119 agonist, as an insulinotropic and β-cell preservative agent for the treatment of type 2 diabetes. Biochem Biophys Res Commun 400:745–751

    Article  CAS  PubMed  Google Scholar 

  • Zakaria Z, Hussain M, Mohamad A, Abdullah F, Sulaiman M (2012) Anti-inflammatory activity of the aqueous extract of Ficus Deltoidea. Biol Res Nurs 14:90–97

    Article  CAS  PubMed  Google Scholar 

  • ZHANG H, JM ZDOLSEK, UT BRUNK (1992) Alloxan cytotoxicity involves lysosomal damage. APMIS 100:309–316

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Kamiya H, Ekberg K, Wahren J, Sima AA (2007) C-peptide improves neuropathy in type 1 diabetic BB/Wor-rats. Diabetes Metab Res Rev 23:63–70

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Pridgen B, King N, Xu J, Breslow JL (2011) Hyperglycemic Ins2AkitaLdlr−/− mice show severely elevated lipid levels and increased atherosclerosis: a model of type 1 diabetic macrovascular disease. J Lipid Res 52:1483–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors thank to Vellore Institute of Technology, Vellore, Tamilnadu, India for supporting this work. The author Papitha R, Kaviyarasi Renu is grateful to Vellore Institute of Technology for providing the financial assistance during this tenure. The authors wish to greatly acknowledge the editor and reviewers for the suggestions and critical evaluation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Immanuel Selvaraj C. or Abilash V. G. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

R., P., Renu, K., C., I., V. G., A. (2018). Anti-Diabetic Effect of Fruits on Different Animal Model System. In: Roopan, S., Madhumitha, G. (eds) Bioorganic Phase in Natural Food: An Overview. Springer, Cham. https://doi.org/10.1007/978-3-319-74210-6_9

Download citation

Publish with us

Policies and ethics