Skip to main content

Vitamin D and Leukaemia

  • Chapter
  • First Online:

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The most active vitamin D metabolite is 1α,25-dihydroxyvitamin D3. This agent is able to drive growth arrest and differentiation of a wide variety of cancer cells, including the differentiation of acute myeloid leukaemia cells towards macrophage-like cells. For 30 years there has been an interest in using 1α,25-dihydroxyvitamin D3 for differentiation therapy of acute leukaemia and other cancers. Despite strong support from the findings from preclinical studies, clinical trials, conducted in myelodysplastic syndrome and acute myeloid leukaemia, have resulted in conflicting and often disappointing results. A main barrier to the use of 1α,25-dihydroxyvitamin D3 is that it is difficult to achieve an effective therapeutic dose which is severely limited by a calcaemic action. The way forward to resolving this problem has been the development of a number of analogues that have a lowered calcaemic action and that retain their differentiating activity against leukaemia cells. In particular, new analogues of 1α,25-dihydroxyvitamin D3 and 1α,25-dihydroxyvitamin D2 have been synthesised with a substantially reduced calcaemic action that are more potent in differentiating acute myeloid leukaemia cells than 1α,25-dihydroxyvitamin D3. The benefit or otherwise of the use of vitamin D analogues, alone or in combination with conventional chemotherapy, to treat patients with leukaemia and other cancers, is far from resolved. Recently synthesised potent and low-calcaemic analogues offer the exciting prospect of new regimes for differentiation therapy of leukaemia.

Acknowledgements

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 315902. GB, AK and EM are partners within the Marie Curie Initial Training Network DECIDE (Decision-making within cells and differentiation entity therapies). The research of EM was supported by National Science Centre, Poland (grant No 2015/17/B/NZ4/02632).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Funk C. The etiology of the deficiency diseases. Beri-beri, polyneuritis in birds, epidemic dropsy, scurvy, experimental scurvy in animals, infantile scurvy, ship beri-beri, pellagra. J State Med. 1912;20:341–68.

    Google Scholar 

  2. Nachliely M, Sharony E, Bolla N, Kutner A, Danilenko M. Prodifferentiation activity of novel vitamin D2 Analogs PRI-1916 and PRI-1917 and their combinations with a plant polyphenol in acute myeloid leukemia cells. Int J Mol Sci. 2016;17:1068.

    Article  PubMed Central  CAS  Google Scholar 

  3. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408.

    Article  CAS  PubMed  Google Scholar 

  4. Bikle D. Extra renal synthesis of 1,25 dihydroxyvitamin D and its health implications. Clin Rev Bone Miner Metab. 2009;7:114–25.

    Article  CAS  Google Scholar 

  5. Henry H. Regulation of vitamin D metabolism. Best Pract Res Clin Endocrinol Metab. 2011;25:531–41.

    Article  CAS  PubMed  Google Scholar 

  6. Adams J, Hewison M. Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase. Arch Biochem Biophys. 2012;523(1):95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Etzioni A, Hochberg Z, Pollak S, Meshulam T, Zakut V, Tzehoval E, et al. Defective leukocyte fungicidal activity in end-organ resistance to 1,25-dihydroxyvitamin D. Pediatr Res. 1989;25:276–9.

    Article  CAS  PubMed  Google Scholar 

  8. Sarkar S, Hewison M, Studzinski G, Li Y, Kalia V. Role of vitamin D in cytotoxic T lymphocyte immunity to pathogens and cancer. Crit Rev Clin Lab Sci. 2016;53(2):132–45.

    Article  CAS  PubMed  Google Scholar 

  9. Hewison M. Vitamin D and immune function: autocrine, paracrine or endocrine? Scand J Clin Lab Invest Suppl. 2012;243:92–102.

    PubMed  Google Scholar 

  10. Lerner A, Shapira Y, Agmon-Levin N, Pacht A, Ben-Ami Shor D, López H, et al. The clinical significance of 25OH-vitamin D status in celiac disease. Clin Rev Allergy Immunol. 2012;42(3):322–30.

    Article  CAS  PubMed  Google Scholar 

  11. Marcinkowska E, Wallace G, Brown G. The use of 1α,25-dihydroxyvitamin D3 as an anticancer agent. Int J Mol Sci. 2016;17(5):729.

    Article  PubMed Central  CAS  Google Scholar 

  12. Apperly F. The relation of solar radiation to cancer mortality in North America. Cancer Res. 1941;1:191–5.

    Google Scholar 

  13. Hanchette C, Schwartz G. Geographic patterns of prostate cancer mortality. Evidence for a protective effect of ultraviolet radiation. Cancer. 1992;70(12):2861–9.

    Article  CAS  PubMed  Google Scholar 

  14. Schwartz G. Vitamin D deficiency and the epidemiology of prostate cancer. In: Holick M, editor. Vitamin D: physiology, molecular biology, and clinical applications. New York: Humana Press; 2010. p. 797–811.

    Chapter  Google Scholar 

  15. Young M, Schwartz G, Wang L, Jamieson D, Whitlatch L, Flanagan J, et al. The prostate 25-hydroxyvitamin D-1 alpha-hydroxylase is not influenced by parathyroid hormone and calcium: implications for prostate cancer chemoprevention by vitamin D. Carcinogenesis. 2004;25(6):967–71.

    Article  CAS  PubMed  Google Scholar 

  16. Ma Y, Zhang P, Wang F, Yang J, Liu Z, Qin H. Association between vitamin D and risk of colorectal cancer: a systematic review of prospective studies. J Clin Oncol. 2011;29(28):3775–82.

    Article  CAS  PubMed  Google Scholar 

  17. Chandler P, Buring J, Manson J, Giovannucci E, Moorthy M, Zhang S, et al. Circulating vitamin D levels and risk of colorectal cancer in women. Cancer Prev Res. 2015;8(8):675–82.

    Article  CAS  Google Scholar 

  18. Maalmi H, Ordóñez-Mena J, Schöttker B, Brenner H. Serum 25-hydroxyvitamin D levels and survival in colorectal and breast cancer patients: systematic review and meta-analysis of prospective cohort studies. Eur J Cancer. 2014;50(8):1510–21.

    Article  CAS  PubMed  Google Scholar 

  19. Mohr S, Gorham E, Kim J, Hofflich H, Cuomo R, Garland C. Could vitamin D sufficiency improve the survival of colorectal cancer patients? J Steroid Biochem Mol Biol. 2015;148:239–44.

    Article  CAS  PubMed  Google Scholar 

  20. Wang B, Jing Z, Li C, Xu S, Wang Y. Blood 25-hydroxyvitamin D levels and overall mortality in patients with colorectal cancer: a dose-response meta-analysis. Eur J Cancer. 2014;50(12):2173–5.

    Article  CAS  PubMed  Google Scholar 

  21. Kim Y, Je Y. Vitamin D intake, blood 25(OH)D levels, and breast cancer risk or mortality: a meta-analysis. Br J Cancer. 2014;110(11):2772–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mohr S, Gorham E, Kim J, Hofflich H, Garland C. Meta-analysis of vitamin D sufficiency for improving survival of patients with breast cancer. Anticancer Res. 2014;34(3):1163–6.

    CAS  PubMed  Google Scholar 

  23. Bade B, Zdebik A, Wagenpfeil S, Gräber S, Geisel J, Vogt T, et al. Low serum 25-hydroxyvitamin D concentrations are associated with increased risk for melanoma and unfavourable prognosis. PLoS One. 2014;9(12):e112863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gilbert D, Vale C, Haire R, Coyle C, Langley R. Repurposing vitamin D as an anticancer drug. Clin Oncol (R Coll Radiol). 2016;28(1):36–41.

    Article  CAS  Google Scholar 

  25. Schenk J, Till C, Tangen C, Goodman P, Song X, Torkko K, et al. Serum 25-hydroxyvitamin D concentrations and risk of prostate cancer: results from the prostate cancer prevention trial. Cancer Epidemiol Biomark Prev. 2014;23(8):1484–93.

    Article  CAS  Google Scholar 

  26. Abe E, Miamura C, Sakagami H, Takeda M, Konno K, Yamazaki T, et al. Differentiation of mouse myeloid leukemia cells induced by 1-alpha,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A. 1981;78:4990–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tanaka H, Abe E, Miyaura C, Kuribayashi T, Konno K, Nishii Y, et al. 1 alpha,25-Dihydroxycholecalciferol and a human myeloid leukaemia cell line (HL-60). Biochem J. 1982;204(3):713–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McCarthy D, San Miguel J, Freake H, Green P, Zola H, Catovsky D, et al. 1,25-Dihydroxyvitamin D3 inhibits proliferation of human promyelocytic leukaemia (HL60) cells and induces monocyte-macrophage differentiation in HL60 and normal bone marrow cells. Leuk Res. 1983;7:51–5.

    Article  CAS  PubMed  Google Scholar 

  29. Mangelsdorf D, Koeffler H, Donaldson C, Pike J, Haussler M. 1,25-Dihydroxyvitamin D3-induced differentiation in a human promyelocytic leukemia cell line (HL-60): receptor-mediated maturation to macrophage-like cells. J Cell Biol. 1984;98(2):391–8.

    Article  CAS  PubMed  Google Scholar 

  30. Godyn J, Xu H, Zhang F, Kolla S, Studzinski G. A dual block to cell cycle progression in HL60 cells exposed to analogues of vitamin D3. Cell Prolif. 1994;27(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  31. Brown G, Choudhry M, Durham J, Drayson M, Michell R. Monocytically differentiating HL60 cells proliferate rapidly before they mature. Exp Cell Res. 1999;253(2):511–8.

    Article  CAS  PubMed  Google Scholar 

  32. Marchwicka A, Cebrat M, Sampath P, Sniezewski L, Marcinkowska E. Perspectives of differentiation therapies of acute myeloid leukemia: the search for the molecular basis of patients’ variable responses to 1,25-dihydroxyvitamin D and vitamin D analogs. Front Oncol. 2014;4:125.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Honma Y, Hozumi M, Abe E, Konno K, Fukushima M, Hata S, et al. 1-Alpha,25-dihydroxyvitamin D3 and 1-alpha-hydroxyvitamin D3 prolong survival time of mice inoculated with myeloid leukemia cells. Proc Natl Acad Sci U S A. 1983;80:201–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shabtay A, Sharabani H, Barvish Z, Kafka M, Amichay D, Levy J, et al. Synergistic antileukemic activity of carnosic acid-rich rosemary extract and the 19-nor Gemini vitamin D analogue in a mouse model of systemic acute myeloid leukemia. Oncology. 2008;75:203–14.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell. 1999;96:507–15.

    Article  CAS  PubMed  Google Scholar 

  36. Nykjaer A, Fyfe J, Kozyraki R, Leheste J, Jacobsen C, Nielsen M, et al. Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25(OH) vitamin D3. Proc Natl Acad Sci U S A. 2001;98:13895–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rowling M, Kemmis C, Taffany D, Welsh J. Megalin-mediated endocytosis of vitamin D binding protein correlates with 25-hydroxycholecalciferol actions in human mammary cells. J Nutr. 2006;136:2754–9.

    Article  CAS  PubMed  Google Scholar 

  38. Abboud M, Puglisi D, Davies B, Rybchyn M, Whitehead N, Brock K, et al. Evidence for a specific uptake and retention mechanism for 25-hydroxyvitamin D (25OHD) in skeletal muscle cells. Endocrinology. 2013;154(9):3022–30.

    Article  CAS  PubMed  Google Scholar 

  39. Atkins G, Anderson P, Findlay D, Welldon K, Vincent C, Zannettino A, et al. Metabolism of vitamin D3 in human osteoblasts: evidence for autocrine and paracrine activities of 1 alpha, 25-dihydroxyvitamin D3. Bone. 2007;40:1517–28.

    Article  CAS  PubMed  Google Scholar 

  40. Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev. 2001;81:1269–304.

    Article  CAS  PubMed  Google Scholar 

  41. Jurutka P, Remus L, Whitfield G, Thompson P, Hsieh J-C, Zitzer H, et al. The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB. Mol Endocrinol. 2000;14:401–20.

    Article  CAS  PubMed  Google Scholar 

  42. Crofts L, Hancock M, Morrison N, Eisman J. Multiple promoters direct the tissue-specific expression of novel N-terminal variant human vitamin D receptor gene transcripts. Proc Natl Acad Sci U S A. 1998;95:10529–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marchwicka A, Cebrat M, Łaszkiewicz A, Śnieżewski Ł, Brown G, Marcinkowska E. Regulation of vitamin D receptor expression by retinoic acid receptor alpha in acute myeloid leukemia cells. J Steroid Biochem Mol Biol. 2016;159:121–30.

    Article  CAS  PubMed  Google Scholar 

  44. Kamei Y, Kawada T, Kazuki R, Ono T, Kato S, Sugimoto E. Vitamin D receptor gene expression is up-regulated by 1, 25-dihydroxyvitamin D3 in 3T3-L1 preadipocytes. Biochem Biophys Res Commun. 1993;193:948–55.

    Article  CAS  PubMed  Google Scholar 

  45. Costa E, Feldman D. Homologous up-regulation of the 1,25(OH)2 vitamin D3 receptor in rats. Biochem Biophys Res Commun. 1986;137:742–7.

    Article  CAS  PubMed  Google Scholar 

  46. Mahonen A, Pirskanen A, Keinänen R, Mäenpää P. Effect of 1,25(OH)2D3 on its receptor mRNA levels and osteocalcin synthesis in human osteosarcoma cells. Biochim Biophys Acta. 1990;1048:30–7.

    Article  CAS  PubMed  Google Scholar 

  47. Arbour N, Prahl J, DeLuca H. Stabilization of the vitamin D receptor in rat osteosarcoma cells through the action of 1,25-dihydroxyvitamin D3. Mol Endocrinol. 1993;7:1307–12.

    CAS  PubMed  Google Scholar 

  48. Gocek E, Kielbinski M, Wylob P, Kutner A, Marcinkowska E. Side-chain modified vitamin D analogs induce rapid accumulation of VDR in the cell nuclei proportionately to their differentiation-inducing potential. Steroids. 2008;73:1359–66.

    Article  CAS  PubMed  Google Scholar 

  49. Byrne I, Flanagan L, Tenniswood M, Welsh J. Identification of a hormone-responsive promoter immediately upstream of exon 1c in the human vitamin D receptor gene. Endocrinology. 2000;141(8):2829–36.

    Article  CAS  PubMed  Google Scholar 

  50. Zella L, Meyer M, Nerenz R, Lee S, Martowicz M, Pike J. Multifunctional enhancers regulate mouse and human vitamin D receptor gene transcription. Mol Endocrinol. 2010;24:128–47.

    Article  CAS  PubMed  Google Scholar 

  51. Rochel N, Wurtz J, Mitschler A, Klaholz B, Moras D. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell. 2000;5:173–9.

    Article  CAS  PubMed  Google Scholar 

  52. Géhin M, Vivat V, Wurtz J, Losson R, Chambon P, Moras D, et al. Structural basis for engineering of retinoic acid receptor isotype-selective agonists and antagonists. Chem Biol. 1999;6(8):519–29.

    Article  PubMed  Google Scholar 

  53. Jääskeläinen T, Ryhänen S, Mahonen A, DeLuca H, Mäenpää P. Mechanism of action of superactive vitamin D analogs through regulated receptor degradation. J Cell Biochem. 2000;76:548–58.

    Article  PubMed  Google Scholar 

  54. Racz A, Barsony J. Hormone-dependent translocation of vitamin D receptors is linked to transactivation. J Biol Chem. 1999;274:19352–60.

    Article  CAS  PubMed  Google Scholar 

  55. Gocek E, Marchwicka A, Baurska H, Chrobak A, Marcinkowska E. Opposite regulation of vitamin D receptor by ATRA in AML cells susceptible and resistant to vitamin D-induced differentiation. J Steroid Biochem Mol Biol. 2012;132(3–5):220–6.

    Article  CAS  PubMed  Google Scholar 

  56. Humeniuk-Polaczek R, Marcinkowska E. Impaired nuclear localization of vitamin D receptor in leukemia cells resistant to calcitriol-induced differentiation. J Steroid Biochem Mol Biol. 2004;88(4–5):361–6.

    Article  CAS  PubMed  Google Scholar 

  57. Lee S, Riley E, Meyer M, Benkusky N, Plum L, DeLuca H, et al. 1,25-Dihydroxyvitamin D3 controls a cohort of vitamin D receptor target genes in the proximal intestine that is enriched for calcium-regulating components. J Biol Chem. 2015;290(29):18199–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Carlberg C, Seuter S, de Mello V, Schwab U, Voutilainen S, Pulkki K, et al. Primary vitamin D target genes allow a categorization of possible benefits of vitamin D3 supplementation. PLoS One. 2013;8(7):e71042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Holick M. Vitamin D and bone health. J Nutr. 1996;126(4 Suppl):1159S–64S.

    Article  CAS  PubMed  Google Scholar 

  60. Ryynänen J, Seuter S, Campbell M, Carlberg C. Gene regulatory scenarios of primary 1,25-dihydroxyvitamin D3 target genes in a human myeloid leukemia cell line. Cancers (Basel). 2013;5:1221–41.

    Article  CAS  Google Scholar 

  61. Carter G. Accuracy of 25-hydroxyvitamin D assays: confronting the issues. Curr Drug Targets. 2011;12:19–28.

    Article  CAS  PubMed  Google Scholar 

  62. Vaisanen S, Dunlop T, Sinkkonen L, Frank C, Carlberg C. Spatio-temporal activation of chromatin on the human CYP24 gene promoter in the presence of 1alpha,25-dihydroxyvitamin D3. J Mol Biol. 2005;350:65–77.

    Article  CAS  PubMed  Google Scholar 

  63. Gocek E, Marchwicka A, Bujko K, Marcinkowska E. NADPH-cytochrome p450 reductase is regulated by all-trans retinoic acid and by 1,25-dihydroxyvitamin D3 in human acute myeloid leukemia cells. PLoS One. 2014;9(3):e91752.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Höbaus J, Hummel D, Thiem U, Fetahu I, Aggarwal A, Müllauer L, et al. Increased copy-number and not DNA hypomethylation causes overexpression of the candidate proto-oncogene CYP24A1 in colorectal cancer. Int J Cancer. 2013;133(6):1380–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Horváth H, Lakatos P, Kósa J, Bácsi K, Borka K, Bises G, et al. The candidate oncogene CYP24A1: a potential biomarker for colorectal tumorigenesis. J Histochem Cytochem. 2010;58(3):277–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Nemere I, Yoshimoto Y, Norman A. Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3. Endocrinology. 1984;115(4):1476–83.

    Article  CAS  PubMed  Google Scholar 

  67. Marcinkowska E, Wiedlocha A, Radzikowski C. 1,25-Dihydroxyvitamin D3 induced activation and subsequent nuclear translocation of MAPK is upstream regulated by PKC in HL-60 cells. Biochem Biophys Res Commun. 1997;241(2):419–26.

    Article  CAS  PubMed  Google Scholar 

  68. Haynes M, Li L, Sinha D, Russell K, Hisamoto K, Baron R, et al. Src kinase mediates phosphatidylinositol 3-kinase/Akt-dependent rapid endothelial nitric-oxide synthase activation by estrogen. J Biol Chem. 2003;278:2118–23.

    Article  CAS  PubMed  Google Scholar 

  69. Gniadecki R. Nongenomic signaling by vitamin D a new face of Src. Biochem Pharmacol. 1998;56:1273–7.

    Article  CAS  PubMed  Google Scholar 

  70. Hughes P, Brown G. 1Alpha,25-dihydroxyvitamin D3-mediated stimulation of steroid sulphatase activity in myeloid leukaemic cell lines requires VDRnuc-mediated activation of the RAS/RAF/ERK-MAP kinase signalling pathway. J Cell Biochem. 2006;98:590–617.

    Article  CAS  PubMed  Google Scholar 

  71. Nemere I, Szego C. Early actions of parathyroid hormone and 1,25-dihydroxycholecalciferol on isolated epithelial cells from rat intestine: I. Limited lysosomal enzyme release and calcium uptake. Endocrinology. 1981;108:1450–62.

    Article  CAS  PubMed  Google Scholar 

  72. Mizwicki M, Norman A. Vitamin D sterol/VDR conformational dynamics and nongenomic actions. In: Feldman D, Pike J, Adams J, editors. Vitamin D. 3rd ed. Riverside: Academic; 2011. p. 271–97.

    Chapter  Google Scholar 

  73. Boyan B, Sylvia V, McKinney N, Schwartz Z. Membrane actions of vitamin D metabolites 1alpha,25(OH)2D3 and 24R,25(OH)2D3 are retained in growth plate cartilage cells from vitamin D receptor knockout mice. J Cell Biochem. 2003;90:1207–23.

    Article  CAS  PubMed  Google Scholar 

  74. Sterling T, Khanal R, Nemere I. The 1,25 dihydroxyvitamin D3-membrane-associated, rapid response steroid-binding receptor. OA Biochem. 2013;1(1):4.

    Article  Google Scholar 

  75. Doroudi M, Chen J, Boyan B, Schwartz Z. New insights on membrane mediated effects of 1α,25-dihydroxy vitamin D3 signaling in the musculoskeletal system. Steroids. 2014;81:81–7.

    Article  CAS  PubMed  Google Scholar 

  76. Doroudi M, Olivares-Navarrete R, Boyan B, Schwartz Z. A review of 1α,25(OH)2D3 dependent Pdia3 receptor complex components in Wnt5a non-canonical pathway signaling. J Steroid Biochem Mol Biol. 2015;152:84–8.

    Article  CAS  PubMed  Google Scholar 

  77. Miyaura C, Abe E, Kuribayashi T, Tanaka H, Konno K, Nishii Y, et al. 1 alpha,25-Dihydroxyvitamin D3 induces differentiation of human myeloid leukemia cells. Biochem Biophys Res Commun. 1981;102:937–43.

    Article  CAS  PubMed  Google Scholar 

  78. Breitman T, Selonick S, Collins S. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A. 1980;77:2936–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sharabani H, Izumchenko E, Wang Q, Kreinin R, Steiner M, Barvish Z, et al. Cooperative antitumor effects of vitamin D3 derivatives and rosemary preparations in a mouse model of myeloid leukemia. Int J Cancer. 2006;118:3012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hellström E, Robèrt K, Gahrton G, Mellstedt H, Lindemalm C, Einhorn S, et al. Therapeutic effects of low-dose cytosine arabinoside, alpha-interferon, 1 alpha-hydroxyvitamin D3 and retinoic acid in acute leukemia and myelodysplastic syndromes. Eur J Haematol. 1988;40(5):449–59.

    Article  PubMed  Google Scholar 

  81. Irino S, Taoka T. Treatment of myelodysplastic syndrome and acute myelogenous leukemia with vitamin D3 [1 alpha(OH)D3]. Gan To Kagaku Ryoho. 1988;15(4):1183–90.

    CAS  PubMed  Google Scholar 

  82. Nakayama S, Ishikawa T, Yabe H, Nagai K, Kasakura S, Uchino H. Successful treatment of a patient with acute myeloid leukemia with 1 alpha(OH)D3. Nihon Ketsueki Gakkai Zasshi. 1988;51(6):1026–30.

    CAS  PubMed  Google Scholar 

  83. Hellström E, Robèrt K, Samuelsson J, Lindemalm C, Grimfors G, Kimby E, et al. Treatment of myelodysplastic syndromes with retinoic acid and 1 alpha-hydroxy-vitamin D3 in combination with low-dose ara-C is not superior to ara-C alone. Results from a randomized study. The Scandinavian Myelodysplasia group (SMG). Eur J Haematol. 1990;45(5):255–61.

    Article  PubMed  Google Scholar 

  84. Lowenberg B. Acute myeloid leukemia: the challenge of capturing disease variety. Hematology Am Soc Hematol Educ Program. 2008;2008:1–11.

    Google Scholar 

  85. Sandler D, Ross J. Epidemiology of acute leukemia in children and adults. Semin Oncol. 1997;24:3–16.

    CAS  PubMed  Google Scholar 

  86. Bennett J, Catovsky D, Daniel M, Flandrin G, Galton D, Gralnick H, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) Co-Operative Group. Br J Haematol. 1976;33:451–8.

    Article  CAS  PubMed  Google Scholar 

  87. Swerdlow S, Campo E, Harris N, Jaffe E, Pileri S, Stein H, et al. Pathology and Genetics: Tumours of Haematopoietic and Lymphoid Tissues (World Health Organization Classification of Tumours). 7th ed. Lyon: International Agency for Research on Cancer; 2008. p. 109–38.

    Google Scholar 

  88. Stone R. Prognostic factors in AML in relation to (ab)normal karyotype. Best Pract Res Clin Haematol. 2009;22:523–8.

    Article  CAS  PubMed  Google Scholar 

  89. Lo-Coco F, Cicconi L, Breccia M. Current standard treatment of adult acute promyelocytic leukaemia. Br J Haematol. 2016;172:841–54.

    Article  PubMed  Google Scholar 

  90. Kakizuka A, Miller WJ, Umesono K, Warrell RJ, Frankel S, Murty V, et al. Chromosomal translocation t(15,17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell. 1991;66(4):663–74.

    Article  CAS  PubMed  Google Scholar 

  91. Zhu J, Gianni M, Kopf E, Honoré N, Chelbi-Alix M, Koken M, et al. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc Natl Acad Sci U S A. 1999;96(26):14807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gocek E, Kielbinski M, Baurska H, Haus O, Kutner A, Marcinkowska E. Different susceptibilities to 1,25-dihydroxyvitamin D3-induced differentiation of AML cells carrying various mutations. Leuk Res. 2010;34:649–57.

    Article  CAS  PubMed  Google Scholar 

  93. Baurska H, Kiełbiński M, Biecek P, Haus O, Jaźwiec B, Kutner A, et al. Monocytic differentiation induced by side-chain modified analogs of vitamin D in ex vivo cells from patients with acute myeloid leukemia. Leuk Res. 2014;38(5):638–47.

    Article  CAS  PubMed  Google Scholar 

  94. Baurska H, Klopot A, Kielbinski M, Chrobak A, Wijas E, Kutner A, et al. Structure-function analysis of vitamin D2 analogs as potential inducers of leukemia differentiation and inhibitors of prostate cancer proliferation. J Steroid Biochem Mol Biol. 2011;126:46–54.

    Article  CAS  PubMed  Google Scholar 

  95. Sohal J, Chase A, Mould S, Corcoran M, Oscier D, Iqbal S, et al. Identification of four new translocations involving FGFR1 in myeloid disorders. Genes Chromosomes Cancer. 2001;32(2):155–63.

    Article  CAS  PubMed  Google Scholar 

  96. Gu T, Goss V, Reeves C, Popova L, Nardone J, Macneill J, et al. Phosphotyrosine profiling identifies the KG-1 cell line as a model for the study of FGFR1 fusions in acute myeloid leukemia. Blood. 2006;108:4202–4.

    Article  CAS  PubMed  Google Scholar 

  97. Munker R, Norman A, Koeffler H. Vitamin D compounds. Effect on clonal proliferation and differentiation of human myeloid cells. J Clin Invest. 1986;78:424–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jin Y, Zhen Y, Haugsten E, Wiedlocha A. The driver of malignancy in KG-1a leukemic cells, FGFR1OP2–FGFR1, encodes an HSP90 addicted oncoprotein. Cell Signal. 2011;23(11):1758–66.

    Article  CAS  PubMed  Google Scholar 

  99. Marchwicka A, Corcoran A, Berkowska K, Marcinkowska E. Restored expression of vitamin D receptor and sensitivity to 1,25-dihydroxyvitamin D3 in response to disrupted fusion FOP2-FGFR1 gene in acute myeloid leukemia cells. Cell Biosci. 2016;6:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Gulliford T, English J, Colston K, Menday P, Moller S, Coombes R. A phase I study of the vitamin D analogue EB 1089 in patients with advanced breast and colorectal cancer. Br J Cancer. 1998;78(1):6–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Medioni J, Deplanque G, Ferrero J, Maurina T, Rodier J, Raymond E, et al. Phase I safety and pharmacodynamic of inecalcitol, a novel VDR agonist with docetaxel in metastatic castration-resistant prostate cancer patients. Clin Cancer Res. 2014;20(17):4471–7.

    Article  CAS  PubMed  Google Scholar 

  102. Harrison J, Bershadskiy A. Clinical experience using vitamin D and analogs in the treatment of myelodysplasia and acute myeloid leukemia: a review of the literature. Leuk Res Treat. 2012;2012:125814.

    Google Scholar 

  103. Kim M, Mirandola L, Pandey A, Nguyen D, Jenkins M, Turcel M, et al. Application of vitamin D and derivatives in hematological malignancies. Cancer Lett. 2012;319(1):8–22.

    Article  CAS  PubMed  Google Scholar 

  104. Koeffler H, Hirji K, Itri L. 1,25-Dihydroxyvitamin D3: in vivo and in vitro effects on human preleukemic and leukemic cells. Cancer Treat Rep. 1985;69:1399–407.

    CAS  PubMed  Google Scholar 

  105. Motomura S, Kanamori H, Maruta A, Kodama F, Ohkubo T. The effect of 1-hydroxyvitamin D3 for prolongation of leukemic transformation-free survival in myelodysplastic syndromes. Am J Hematol. 1991;38:67–8.

    Article  CAS  PubMed  Google Scholar 

  106. Mellibovsky L, Díez A, Pérez-Vila E, Serrano S, Nacher M, Aubía J, et al. Vitamin D treatment in myelodysplastic syndromes. Br J Haematol. 1998;100(3):516–20.

    Article  CAS  PubMed  Google Scholar 

  107. Yoshida Y, Oguma S, Uchino H, Maekawa T, Nomura T. A randomized study of alfacalcidol in the refractory myelodysplastic anaemias. A Japanese cooperative study. Int J Clin Pharmacol Res. 1993;13(1):21–7.

    CAS  PubMed  Google Scholar 

  108. Blazsek I, Farabos C, Musset M, Goldschmidt E, Comisso M, Benavides M, et al. Retinoic acid in mono- or combined differentiation therapy of myelodysplasia and acute promyelocytic leukemia. Biomed Pharmacother. 1991;45(4–5):169–77.

    Article  CAS  PubMed  Google Scholar 

  109. Siitonen T, Timonen T, Juvonen E, Terävä V, Kutila A, Honkanen T, et al. Valproic acid combined with 13-cis retinoic acid and 1,25-dihydroxyvitamin D3 in the treatment of patients with myelodysplastic syndromes. Haematologica. 2007;92(8):1119–22.

    Article  CAS  PubMed  Google Scholar 

  110. De Rosa L, Montuoro A, De Laurenzi A. Therapy of ‘high risk’ myelodysplastic syndromes with an association of low-dose Ara-C, retinoic acid and 1,25-dihydroxyvitamin D3. Biomed Pharmacother. 1992;46(5–7):211–7.

    Article  PubMed  Google Scholar 

  111. Ferrero D, Campa E, Dellacasa C, Campana S, Foli C, Boccadoro M. Differentiating agents + low-dose chemotherapy in the management of old/poor prognosis patients with acute myeloid leukemia or myelodysplastic syndrome. Haematologica. 2004;89:619–20.

    CAS  PubMed  Google Scholar 

  112. Ferrero D, Bruno B, Pregno P, Stefani S, Larizza E, Ciravegna G, et al. Combined differentiating therapy for myelodysplastic syndromes: a phase II study. Leuk Res. 1996;20(10):867–76.

    Article  CAS  PubMed  Google Scholar 

  113. Slapak C, Desforges J, Fogaren T, Miller K. Treatment of acute myeloid leukemia in the elderly with low-dose cytarabine, hydroxyurea, and calcitriol. Am J Hematol. 1992;41:178–83.

    Article  CAS  PubMed  Google Scholar 

  114. Ferrero D, Darbesio A, Giai V, Genuardi M, Dellacasa C, Sorasio R, et al. Efficacy of a combination of human recombinant erythropoietin + 13-cis-retinoic acid and dihydroxylated vitamin D3 to improve moderate to severe anaemia in low/intermediate risk myelodysplastic syndromes. Br J Haematol. 2009;144(3):342–9.

    Article  CAS  PubMed  Google Scholar 

  115. Hybrigenics. http://www.hybrigenics.com/. Accessed 1 Sept 2016.

  116. On 28 July 2015, orphan designation (EU/3/15/1523) was granted by the European Commission to Hybrigenics SA, France, for inecalcitol for the treatment of acute myeloid leukaemia. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/orphans/2015/08/human_orphan_001616.jsp&mid=WC0b01ac058001d12b. Accessed 1 Sept 2016.

  117. U.S. FDA Granted Orphan Drug Designation to Inecalcitol for Treatment of Acute Myeloid Leukemia. http://wxpress.wuxiapptec.com/u-s-fda-granted-orphan-drug-designation-inecalcitol-treatment-acute-myeloid-leukemia/. Accessed 1 Sept 2016.

  118. Leyssens C, Verlinden L, Verstuyf A. The future of vitamin D analogs. Front Physiol. 2014;3(5):122.

    Google Scholar 

  119. Nadkarni S, Chodynski M, Corcoran A, Marcinkowska E, Brown G, Kutner A. Double point modified analogs of vitamin d as potent activators of vitamin D receptor. Curr Pharm Des. 2015;21(13):1741–63.

    Article  CAS  PubMed  Google Scholar 

  120. Corcoran A, Bermudez M, Seoane S, Perez-Fernandez R, Krupa M, Pietraszek A, et al. Biological evaluation of new vitamin D2 analogues. J Steroid Biochem Mol Biol. 2015;164:66–71. S0960-0760(15)30093-5.

    Article  PubMed  CAS  Google Scholar 

  121. Trynda J, Turlej E, Milczarek M, Pietraszek A, Chodyński M, Kutner A, et al. Antiproliferative activity and in vivo toxicity of double-point modified Analogs of 1,25-Dihydroxyergocalciferol. Int J Mol Sci. 2015;16(10):24873–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pietraszek A, Malińska M, Chodyński M, Krupa M, Krajewski K, Cmoch P, et al. Synthesis and crystallographic study of 1,25-dihydroxyergocalciferol analogs. Steroids. 2013;78(10):1003–14. https://doi.org/10.1016/j.steroids.2013.06.001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Brown BSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brown, G., Kutner, A., Marcinkowska, E. (2018). Vitamin D and Leukaemia. In: Liao, E. (eds) Extraskeletal Effects of Vitamin D. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-73742-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73742-3_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-73741-6

  • Online ISBN: 978-3-319-73742-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics