Skip to main content

Hydroxyapatite: Design with Nature

  • Chapter
  • First Online:
Orthopedic Biomaterials

Abstract

Hydroxyapatite, the basic inorganic material in bone, has been used widely in orthopaedic applications. In this chapter, we report the recent advances in research regarding hydroxyapatite. Biomineralization process as well as synthesis routes of hydroxyapatite is discussed. This chapter also addresses several new features of hydroxyapatite material discovered when co-culturing with different cells. Its traditional as well as the potential future applications are found at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalita SJ, Bhardwaj A, Bhatt HA. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C Biomim Mater Sensors Syst. 2007;27:441–9. file://localhost/Users/rudihoetzel/Uni/Papers/2007/Kalita/Kalita_Mater. Sci. Eng. C Biomim. Mater. Sens. Syst._2007.pdf%5Cnpapers://66582432-3a6a-44fc-b266-774d13a6b7da/Paper/p2636

    Article  CAS  Google Scholar 

  2. Boskey AL. Mineralization of bones and teeth. Elements. 2007;3:385–91. https://doi.org/10.2113/GSELEMENTS.3.6.385.

    Article  CAS  Google Scholar 

  3. Olszta MJ, Cheng X, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB. Bone structure and formation: a new perspective. Mater Sci Eng R Rep. 2007;58:77–116. https://doi.org/10.1016/j.mser.2007.05.001.

    Article  CAS  Google Scholar 

  4. Weiner S. An overview of biomineralization processes and the problem of the vital effect. Rev Miner Geochem. 2003;54:1–29. https://doi.org/10.2113/0540001.

    Article  CAS  Google Scholar 

  5. Aizenberg J. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science. 2005;309:275–8. https://doi.org/10.1126/science.1112255.

    Article  CAS  PubMed  Google Scholar 

  6. Barralet J, Best S, Bonfield W. Carbonate substitution in precipitated hydroxyapatite: an investigation into the effects of reaction temperature and bicarbonate ion concentration. J Biomed Mater Res. 1998;41:79–86. https://doi.org/10.1002/(SICI)1097-4636(199807)41:1<79::AID-JBM10>3.0.CO;2-C.

    Article  CAS  PubMed  Google Scholar 

  7. Thompson RB, Reffatto V, Bundy JG, Kortvely E, Flinn JM, Lanzirotti A, Jones EA, McPhail DS, Fearn S, Boldt K, Ueffing M, Ratu SGS, Pauleikhoff L, Bird AC, Lengyel I. Identification of hydroxyapatite spherules provides new insight into subretinal pigment epithelial deposit formation in the aging eye. Proc Natl Acad Sci U S A. 2015;112:1565–70. https://doi.org/10.1073/pnas.1413347112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shih YV, Hwang Y, Phadke A, Kang H, Hwang NS, Caro EJ. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proc Natl Acad Sci U S A. 2013;111:990–5. https://doi.org/10.1073/pnas.1321717111.

    Article  CAS  Google Scholar 

  9. Beck GR Jr. Inorganic phosphate as a signaling molecule in osteoblast differentiation. J Cell Biochem. 2003;90:234–43. https://doi.org/10.1002/jcb.10622.

    Article  CAS  PubMed  Google Scholar 

  10. van Leeuwen JP, van Driel M, van den Bemd GJ, Pols HA. Vitamin D control of osteoblast function and bone extracellular matrix mineralization. Crit Rev Eukaryot Gene Expr. 2001;11:199–226. https://doi.org/10.1615/CritRevEukarGeneExpr.v11.i1-3.100.

    Article  PubMed  Google Scholar 

  11. Jones D, Morgan C, Cockcroft S. Phospholipase D and membrane traffic. Potential roles in regulated exocytosis, membrane delivery and vesicle budding. Biochim Biophys Acta Mol Cell Biol Lipids. 1999;1439:229–44. https://doi.org/10.1016/S1388-1981(99)00097-9.

    Article  CAS  Google Scholar 

  12. Anderson HC. Molecular biology of matrix vesicles. Clin Orthop Relat Res 1995 (314) 266–80. https://doi.org/10.1097/00003086-199505000-00034.

  13. Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sørensen ES, Boskey AL. Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int. 2005;77:45–54. https://doi.org/10.1007/s00223-004-1288-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hunter GK, Kyle CL, Goldberg HA. Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem. J. 1994;300(Pt 3):723–8. https://doi.org/10.1042/bj3020175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Flores ME, Norgård M, Heinegård D, Reinholt FP, Andersson G. RGD-directed attachment of isolated rat osteoclasts to osteopontin, bone sialoprotein, and fibronectin. Exp Cell Res. 1992;201:526–30. https://doi.org/10.1016/0014-4827(92)90305-R.

    Article  CAS  PubMed  Google Scholar 

  16. Addison WN, Nelea V, Chicatun F, Chien YC, Tran-Khanh N, Buschmann MD, Nazhat SN, Kaartinen MT, Vali H, Tecklenburg MM, Franceschi RT, McKee MD. Extracellular matrix mineralization in murine MC3T3-E1 osteoblast cultures: an ultrastructural, compositional and comparative analysis with mouse bone. Bone. 2015;71:244–56. https://doi.org/10.1016/j.bone.2014.11.003.

    Article  CAS  PubMed  Google Scholar 

  17. Niu L, Jee SE, Jiao K, Tonggu L, Li M, Wang L, Yang Y, Bian J, Breschi L, Jang SS, Chen J, Pashley DH, Tay FR. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater. 2016;16:370–8. https://doi.org/10.1038/nmat4789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Miller A, Parker SB. Collagen: the organic matrix of bone. Philos Trans R Soc B Biol Sci. 1984;304:455–77. https://doi.org/10.1098/rstb.1984.0040.

    Article  CAS  Google Scholar 

  19. Weiner S, Traub W. Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett. 1986;206:262–6. https://doi.org/10.1016/0014-5793(86)80993-0.

    Article  CAS  PubMed  Google Scholar 

  20. Orgel JPRO, Irving TC, Miller A, Wess TJ. Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci U S A. 2006;103:9001–5. https://doi.org/10.1073/pnas.0502718103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci U S A. 2010;107:6316–21. https://doi.org/10.1073/pnas.0914218107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang J, Shaw LL. Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials. 2009;30:6565–72. https://doi.org/10.1016/j.biomaterials.2009.08.048.

    Article  CAS  PubMed  Google Scholar 

  23. Gervaso F, Scalera F, Kunjalukkal Padmanabhan S, Sannino A, Licciulli A. High-performance hydroxyapatite scaffolds for bone tissue engineering applications. Int J Appl Ceram Technol. 2012;9:507–16. https://doi.org/10.1111/j.1744-7402.2011.02662.x.

    Article  CAS  Google Scholar 

  24. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000;21:1803–10. https://doi.org/10.1016/S0142-9612(00)00075-2.

    Article  CAS  PubMed  Google Scholar 

  25. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials. 2001;22:1327–33. https://doi.org/10.1016/S0142-9612(00)00285-4.

    Article  CAS  PubMed  Google Scholar 

  26. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res. 2000;51:475–83. https://doi.org/10.1002/1097-4636(20000905)51:3<475::AID-JBM23>3.0.CO;2-9.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7:2769–81. https://doi.org/10.1016/j.actbio.2011.03.019.

    Article  CAS  PubMed  Google Scholar 

  28. Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 2013;9:7591–621. https://doi.org/10.1016/j.actbio.2013.04.012.

    Article  CAS  PubMed  Google Scholar 

  29. Fox K, Tran PA, Tran N. Recent advances in research applications of nanophase hydroxyapatite. ChemPhysChem. 2012;13:2495–506. https://doi.org/10.1002/cphc.201200080.

    Article  CAS  PubMed  Google Scholar 

  30. Dhand V, Rhee KY, Park SJ. The facile and low temperature synthesis of nanophase hydroxyapatite crystals using wet chemistry. Mater Sci Eng C. 2014;36:152–9. https://doi.org/10.1016/j.msec.2013.11.049.

    Article  CAS  Google Scholar 

  31. Santhosh S, Balasivanandha Prabu S. Thermal stability of nano hydroxyapatite synthesized from sea shells through wet chemical synthesis. Mater Lett. 2013;97:121–4. https://doi.org/10.1016/j.matlet.2013.01.081.

    Article  CAS  Google Scholar 

  32. Abidi SSA, Murtaza Q. Synthesis and characterization of nano-hydroxyapatite powder using wet chemical precipitation reaction. J Mater Sci Technol. 2014;30:307–10. https://doi.org/10.1016/j.jmst.2013.10.011.

    Article  CAS  Google Scholar 

  33. Liu W, Qian G, Zhang B, Liu L, Liu H. Facile synthesis of spherical nano hydroxyapatite and its application in photocatalytic degradation of methyl orange dye under UV irradiation. Mater Lett. 2016;178:15–7. https://doi.org/10.1016/j.matlet.2016.04.175.

    Article  CAS  Google Scholar 

  34. Bakan F, Laçin O, Sarac H. A novel low temperature sol-gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technol. 2013;233:295–302. https://doi.org/10.1016/j.powtec.2012.08.030.

    Article  CAS  Google Scholar 

  35. Sanosh KP, Chu M-C, Balakrishnan A, Kim TN, Cho S-J. Preparation and characterization of nano-hydroxyapatite powder using sol-gel technique. Bull Mater Sci. 2009;32:465–70. https://doi.org/10.1007/s12034-009-0069-x.

    Article  CAS  Google Scholar 

  36. Klinkaewnarong J, Utara S. Preparation and characterization of nanohydroxyapatite by modified sol-gel method with natural rubber latex as a templating agent. Inorg Nano-Metal Chem. 2017;47:340–6. https://doi.org/10.1080/15533174.2016.1186045.

    Article  CAS  Google Scholar 

  37. Ben-Arfa BAE, Salvado IMM, Ferreira JMF, Pullar RC. Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time. Mater Sci Eng C. 2017;70 (796–804. https://doi.org/10.1016/j.msec.2016.09.054.

    Article  CAS  Google Scholar 

  38. Gao YL, Wang XS, Cui HH, Mu MM, Huang FZ. Microemulsion synthesis of hydroxyapatite nanomaterials and their adsorption behaviors for Cr3+ ions. Russ J Phys Chem A. 2016;90:1039–41. https://doi.org/10.1134/S0036024416050137.

    Article  CAS  Google Scholar 

  39. Song Y, Gao J, Zhang Y, Song S. Preparation and characterization of nano-hydroxyapatite and its competitive adsorption kinetics of copper and lead ions in water. Nanomater Nanotechnol. 2016;6:184798041668080. https://doi.org/10.1177/1847980416680807.

    Article  Google Scholar 

  40. Ma X, Chen Y, Qian J, Yuan Y, Liu C. Controllable synthesis of spherical hydroxyapatite nanoparticles using inverse microemulsion method. Mater Chem Phys. 2016;183:220–9. https://doi.org/10.1016/j.matchemphys.2016.08.021.

    Article  CAS  Google Scholar 

  41. Chen J, Wen Z, Zhong S, Wang Z, Wu J, Zhang Q. Synthesis of hydroxyapatite nanorods from abalone shells via hydrothermal solid-state conversion. Mater Des. 2015;87:445–9. https://doi.org/10.1016/j.matdes.2015.08.056.

    Article  CAS  Google Scholar 

  42. Ingole VH, Hussein KH, Kashale AA, Gattu KP, Dhanayat SS, Vinchurkar A, Chang J, Ghule AV. Invitro bioactivity and osteogenic activity study of solid state synthesized nano-hydroxyapatite using recycled eggshell bio-waste. Chem Select. 2016;1:3901–8. https://doi.org/10.1002/slct.201601092.

    CAS  Google Scholar 

  43. Chen YQ, Xing XF, Gao WM. Synthesis of spherical nano-hydroxyapatite by hydrothermal method with L-lysine template. Key Eng Mater. 2014;633:17–20. https://doi.org/10.4028/www.scientific.net/KEM.633.17.

    Article  CAS  Google Scholar 

  44. Geng Z, Yuan Q, Zhuo X, Li Z, Cui Z, Zhu S, Liang Y, Liu Y, Bao H, Li X, Huo Q, Yang X. Synthesis, characterization, and biological evaluation of nanostructured hydroxyapatite with different dimensions. Nano. 2017;7:38. https://doi.org/10.3390/nano7020038.

    Google Scholar 

  45. Türk S, Altınsoy I, ÇelebiEfe G, Ipek M, Özacar M, Bindal C. Microwave-assisted biomimetic synthesis of hydroxyapatite using different sources of calcium. Mater Sci Eng C. 2017;76:528–35. https://doi.org/10.1016/j.msec.2017.03.116.

    Article  CAS  Google Scholar 

  46. Utara S, Klinkaewnarong J. Preparation of nano-hydroxyapatite particles by ultrasonic method at 25 kHz using natural rubber latex as a templating agent. Chiang Mai J Sci. 2016;43:320–8.

    Google Scholar 

  47. Gao X, Song J, Ji P, Zhang X, Li X, Xu X, Wang M, Zhang S, Deng Y, Deng F, Wei S. Polydopamine-templated hydroxyapatite reinforced polycaprolactone composite nanofibers with enhanced cytocompatibility and osteogenesis for bone tissue engineering. ACS Appl Mater Interfaces. 2016;8:3499–515. https://doi.org/10.1021/acsami.5b12413.

    Article  CAS  PubMed  Google Scholar 

  48. Sheikh L, Tripathy S, Nayar S. Biomimetic matrix mediated room temperature synthesis and characterization of nano-hydroxyapatite towards targeted drug delivery. RSC Adv. 2016;6:62556–71. https://doi.org/10.1039/C6RA06759J.

    Article  CAS  Google Scholar 

  49. Leena M, Rana D, Webster TJ, Ramalingam M. Accelerated synthesis of biomimetic nano hydroxyapatite using simulated body fluid. Mater Chem Phys. 2016;180:166–72. https://doi.org/10.1016/j.matchemphys.2016.05.060.

    Article  CAS  Google Scholar 

  50. Yoruç ABH, Aydınoğlu A. The precursors effects on biomimetic hydroxyapatite ceramic powders. Mater Sci Eng C. 2017;75:934–46. https://doi.org/10.1016/j.msec.2017.02.049.

    Article  CAS  Google Scholar 

  51. Sunil BR, Jagannatham M. Producing hydroxyapatite from fish bones by heat treatment. Mater Lett. 2016;185:411–4. https://doi.org/10.1016/j.matlet.2016.09.039.

    Article  CAS  Google Scholar 

  52. Wu SC, Hsu HC, Hsu SK, Tseng CP, Ho WF. Preparation and characterization of hydroxyapatite synthesized from oyster shell powders. Adv Powder Technol. 2017;28:1154–8. https://doi.org/10.1016/j.apt.2017.02.001.

    Article  CAS  Google Scholar 

  53. Shavandi A, Bekhit AEDA, Ali A, Sun Z. Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method. Mater Chem Phys. 2015;149:607–16. https://doi.org/10.1016/j.matchemphys.2014.11.016.

    Article  CAS  Google Scholar 

  54. Sadat-Shojai M, Khorasani M-T, Jamshidi A. Hydrothermal processing of hydroxyapatite nanoparticles—a Taguchi experimental design approach. J Cryst Growth. 2012;361:73–84. https://doi.org/10.1016/j.jcrysgro.2012.09.010.

    Article  CAS  Google Scholar 

  55. Xia L, Lin K, Jiang X, Xu Y, Zhang M, Chang J, Zhang Z. Enhanced osteogenesis through nano-structured surface design of macroporous hydroxyapatite bioceramic scaffolds via activation of ERK and p38 MAPK signaling pathways. J Mater Chem B. 2013;1:5403. https://doi.org/10.1039/c3tb20945h.

    Article  CAS  Google Scholar 

  56. Lin K, Xia L, Gan J, Zhang Z, Chen H, Jiang X, Chang J. Tailoring the nanostructured surfaces of hydroxyapatite bioceramics to promote protein adsorption, osteoblast growth, and osteogenic differentiation. ACS Appl Mater Interfaces. 2013;5:8008–17. https://doi.org/10.1021/am402089w.

    Article  CAS  PubMed  Google Scholar 

  57. Xia L, Lin K, Jiang X, Fang B, Xu Y, Liu J, Zeng D, Zhang M, Zhang X, Chang J, Zhang Z. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells. Biomaterials. 2014;35:8514–27. https://doi.org/10.1016/j.biomaterials.2014.06.028.

    Article  CAS  PubMed  Google Scholar 

  58. Chen Y, Sun Z, Li Y, Hong Y. Preparation and biological effects of apatite nanosheet-constructed porous ceramics. J Mater Chem B. 2017;5:807–16. https://doi.org/10.1039/C6TB01902A.

    Article  CAS  Google Scholar 

  59. Ye X, Zhou C, Xiao Z, Fan Y, Zhu X, Sun Y, Zhang X. Fabrication and characterization of porous 3D whisker-covered calcium phosphate scaffolds. Mater Lett. 2014;128:179–82. https://doi.org/10.1016/j.matlet.2014.04.142.

    Article  CAS  Google Scholar 

  60. Chen Y, Sun Z, Li Y, Hong Y. Osteogenic commitment of mesenchymal stem cells in apatite nanorod-aligned ceramics. ACS Appl Mater Interfaces. 2014;6:21886–93. https://doi.org/10.1021/am5064662.

    Article  CAS  PubMed  Google Scholar 

  61. Lee JH, Rim NG, Jung HS, Shin H. Control of osteogenic differentiation and mineralization of human mesenchymal stem cells on composite nanofibers containing poly [lactic-co-(glycolic acid)] and hydroxyapatite. Macromol Biosci. 2010;10:173–82. https://doi.org/10.1002/mabi.200900169.

    Article  CAS  PubMed  Google Scholar 

  62. Hu Q, Tan Z, Liu Y, Tao J, Cai Y, Zhang M, Pan H, Xu X, Tang R. Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. J Mater Chem. 2007;17:4690. https://doi.org/10.1039/b710936a.

    Article  CAS  Google Scholar 

  63. Xu Z, Liu C, Wei J, Sun J. Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts. J Appl Toxicol. 2012;32:429–35. https://doi.org/10.1002/jat.1745.

    Article  CAS  PubMed  Google Scholar 

  64. Zhou GS, Su ZY, Cai YR, Liu YK, Dai LC, Tang RK, Zhang M. Different effects of nanophase and conventional hydroxyapatite thin films on attachment, proliferation and osteogenic differentiation of bone marrow derived mesenchymal stem cells. Biomed Mater Eng. 2007;17:387–95. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18032820

    CAS  PubMed  Google Scholar 

  65. Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2001;22:87–96. https://doi.org/10.1016/S0142-9612(00)00174-5.

    Article  CAS  PubMed  Google Scholar 

  66. Berube P, Yang Y, Carnes DL, Stover RE, Boland EJ, Ong JL. The effect of sputtered calcium phosphate coatings of different crystallinity on osteoblast differentiation. J Periodontol. 2005;76:1697–709. https://doi.org/10.1902/jop.2005.76.10.1697.

    Article  CAS  PubMed  Google Scholar 

  67. dos Santos EA, Farina M, Soares GA, Anselme K. Surface energy of hydroxyapatite and beta-tricalcium phosphate ceramics driving serum protein adsorption and osteoblast adhesion. J Mater Sci Med. 2008;19:2307–16. https://doi.org/10.1007/s10856-007-3347-4.

    Article  CAS  Google Scholar 

  68. Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30:2175–9. https://doi.org/10.1016/j.biomaterials.2009.01.008.

    Article  CAS  PubMed  Google Scholar 

  69. Meirelles L, Arvidsson A, Andersson M, Kjellin P, Albrektsson T, Wennerberg A. Nano hydroxyapatite structures influence early bone formation. J Biomed Mater Res A. 2008;87:299–307. https://doi.org/10.1002/jbm.a.31744.

    Article  PubMed  CAS  Google Scholar 

  70. Okada S, Ito H, Nagai A, Komotori J, Imai H. Adhesion of osteoblast-like cells on nanostructured hydroxyapatite. Acta Biomater. 2010;6:591–7. https://doi.org/10.1016/j.actbio.2009.07.037.

    Article  CAS  PubMed  Google Scholar 

  71. Rouahi M, Champion E, Gallet O, Jada A, Anselme K. Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering. Colloids Surf B Biointerfaces. 2006;47:10–9. https://doi.org/10.1016/j.colsurfb.2005.11.015.

    Article  CAS  PubMed  Google Scholar 

  72. Kandori K, Murata K, Ishikawa T. Microcalorimetric study of protein adsorption onto calcium hydroxyapatites. Langmuir. 2007;23:2064–70. https://doi.org/10.1021/la062562n.

    Article  CAS  PubMed  Google Scholar 

  73. Jung GY, Park YJ, Han JS. Effects of HA released calcium ion on osteoblast differentiation. J Mater Sci Mater Med. 2010;21:1649–54. https://doi.org/10.1007/s10856-010-4011-y.

    Article  CAS  PubMed  Google Scholar 

  74. Chen LL, Huang M, Tan JY, Chen XT, Lei LH, Wu YM, Zhang DY. PI3K/AKT pathway involvement in the osteogenic effects of osteoclast culture supernatants on preosteoblast cells. Tissue Eng Part A. 2013;19:2226–32. https://doi.org/10.1089/ten.TEA.2012.0469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen J, Crawford R, Chen C, Xiao Y. The key regulatory roles of the PI3K/Akt signalling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. Tissue Eng Part B Rev. 2013;19:516–28. https://doi.org/10.1089/ten.TEB.2012.0672.

    Article  CAS  PubMed  Google Scholar 

  76. Akeno N, Robins J, Zhang M, Czyzyk-Krzeska MF, Clemens TL. Induction of vascular endothelial growth factor by IGF-I in osteoblast-like cells is mediated by the PI3K signaling pathway through the hypoxia-inducible factor-2alpha. Endocrinology. 2002;143:420–5. https://doi.org/10.1210/endo.143.2.8639.

    Article  CAS  PubMed  Google Scholar 

  77. Kanczler JM, Oreffo ROC. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater. 2008;15:100–14. https://doi.org/10.22203/eCM.v015a08.

    Article  CAS  PubMed  Google Scholar 

  78. Ha SW, Jang HL, Nam KT, Beck GR. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials. 2015;65:32–42. https://doi.org/10.1016/j.biomaterials.2015.06.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li B, Guo B, Fan H, Zhang X. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro. Appl Surf Sci. 2008;255:357–60. https://doi.org/10.1016/j.apsusc.2008.06.114.

    Article  CAS  Google Scholar 

  80. Hong Y, Fan H, Li B, Guo B, Liu M, Zhang X. Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Mater Sci Eng R Rep. 2010;70:225–42. https://doi.org/10.1016/j.mser.2010.06.010.

    Article  CAS  Google Scholar 

  81. Chen X, Deng C, Tang S, Zhang M. Mitochondria-dependent apoptosis induced by nanoscale hydroxyapatite in human gastric cancer SGC-7901 cells. Biol Pharm Bull. 2007;30:128–32. https://doi.org/10.1248/bpb.30.128.

    Article  PubMed  Google Scholar 

  82. Shi Z, Huang X, Liu B, Tao H, Cai Y, Tang R. Biological response of osteosarcoma cells to size-controlled nanostructured hydroxyapatite. J Biomater Appl. 2010;25:19–37. https://doi.org/10.1177/0885328209339396.

    Article  CAS  PubMed  Google Scholar 

  83. Yuan Y, Liu C, Qian J, Wang J, Zhang Y. Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials. 2010;31:730–40. https://doi.org/10.1016/j.biomaterials.2009.09.088.

    Article  CAS  PubMed  Google Scholar 

  84. Müller KH, Motskin M, Philpott AJ, Routh AF, Shanahan CM, Duer MJ, Skepper JN. The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles inhuman monocyte-derived macrophages. Biomaterials. 2014;35:1074–88. https://doi.org/10.1016/j.biomaterials.2013.10.041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Bauer I, Li S-P, Han Y-C, Yuan L, Yin M-Z. Internalization of hydroxyapatite nanoparticles in liver cancer cells. J Mater Sci Mater Med. 2008;19:1091–5. https://doi.org/10.1007/s10856-007-3124-4.

    Article  CAS  PubMed  Google Scholar 

  86. Liu ZS, Tang SL, Ai ZL. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World J Gastroenterol. 2003;9:1968–71. https://doi.org/10.1007/s11051-011-0712-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tay CY, Fang W, Setyawati MI, Chia SL, Tan KS, Hong CHL, Leong DT. Nano-hydroxyapatite and nano-titanium dioxide exhibit different subcellular distribution and apoptotic profile in human oral epithelium. ACS Appl Mater Interfaces. 2014;6:6248–56. https://doi.org/10.1021/am501266a.

    Article  CAS  PubMed  Google Scholar 

  88. Han Y, Li S, Cao X, Yuan L, Wang Y, Yin Y, Qiu T, Dai H, Wang X. Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Sci Rep. 2014;4:7134. https://doi.org/10.1038/srep07134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu J, Xu P, Li Z, Huang J, Yang Z. Oxidative stress and apoptosis induced by hydroxyapatite nanoparticles in C6 cells. J Biomed Mater Res A. 2012;100(A):738–45. https://doi.org/10.1002/jbm.a.33270.

    Article  PubMed  CAS  Google Scholar 

  90. Sun J, Ding T. P53 Reaction to apoptosis induced by hydroxy apatite nanoparticles in rat macrophages. J Biomed Mater Res A. 2009;88:673–9. https://doi.org/10.1002/jbm.a.31892.

    Article  PubMed  CAS  Google Scholar 

  91. Zhang H, Qing F, Zhao H, Fan H, Liu M, Zhang X. Cellular internalization of rod-like nano hydroxyapatite particles and their size and dose-dependent effects on pre-osteoblasts. J Mater Chem B. 2017;5:1205–17. https://doi.org/10.1039/C6TB01401A.

    Article  CAS  Google Scholar 

  92. Remya NS, Syama S, Gayathri V, Varma HK, Mohanan PV. An in vitro study on the interaction of hydroxyapatite nanoparticles and bone marrow mesenchymal stem cells for assessing the toxicological behaviour. Colloids Surf B Biointerfaces. 2014;117:389–97. https://doi.org/10.1016/j.colsurfb.2014.02.004.

    Article  CAS  PubMed  Google Scholar 

  93. Motskin M, Wright DM, Muller K, Kyle N, Gard TG, Porter AE, Skepper JN. Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials. 2009;30:3307–17. https://doi.org/10.1016/j.biomaterials.2009.02.044.

    Article  CAS  PubMed  Google Scholar 

  94. Chen L, Mccrate JM, Lee JC-M, Li H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology. 2011;22:105708. https://doi.org/10.1088/0957-4484/22/10/105708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Xu JL, Khor KA, Sui JJ, Zhang JH, Chen WN. Protein expression profiles in osteoblasts in response to differentially shaped hydroxyapatite nanoparticles. Biomaterials. 2009;30:5385–91. https://doi.org/10.1016/j.biomaterials.2009.07.002.

    Article  CAS  PubMed  Google Scholar 

  96. Cai Y, Liu Y, Yan W, Hu Q, Tao J, Zhang M, Shi Z, Tang R. Role of hydroxyapatite nanoparticle size in bone cell proliferation. J Mater Chem. 2007;17:3780. https://doi.org/10.1039/b705129h.

    Article  CAS  Google Scholar 

  97. Cui X, Liang T, Liu C, Yuan Y, Qian J. Correlation of particle properties with cytotoxicity and cellular uptake of hydroxyapatite nanoparticles in human gastric cancer cells. Mater Sci Eng C. 2016;67:453–60. https://doi.org/10.1016/j.msec.2016.05.034.

    Article  CAS  Google Scholar 

  98. Tang W, Yuan Y, Liu C, Wu Y, Lu X, Qian J. Differential cytotoxicity and particle action of hydroxyapatite nanoparticles in human cancer cells. Nanomedicine. 2014;9:397–412. https://doi.org/10.2217/nnm.12.217.

    Article  CAS  PubMed  Google Scholar 

  99. Qing F, Wang Z, Hong Y, Liu M, Guo B, Luo H, Zhang X. Selective effects of hydroxyapatite nanoparticles on osteosarcoma cells and osteoblasts. J Mater Sci Mater Med. 2012;23:2245–51. https://doi.org/10.1007/s10856-012-4703-6.

    Article  CAS  PubMed  Google Scholar 

  100. Sun Y, Chen Y, Ma X, Yuan Y, Liu C, Kohn J, Qian J. Mitochondria-targeted hydroxyapatite nanoparticles for selective growth inhibition of lung cancer in vitro and in vivo. ACS Appl Mater Interfaces. 2016;8:25680–90. https://doi.org/10.1021/acsami.6b06094.

    Article  CAS  PubMed  Google Scholar 

  101. Müller-Mai CM, Stupp SI, Voigt C, Gross U. Nanoapatite and organoapatite implants in bone: histology and ultrastructure of the interface. J Biomed Mater Res. 1995;29:9–18. https://doi.org/10.1002/jbm.820290103.

    Article  PubMed  Google Scholar 

  102. Klein CPAT, de Blieck-Hogemrst JMA, Wolket JGC, de Groot K. Studies of the solubility of different calcium phosphate ceramic particles in vitro. Biomaterials. 1990;11:509–12. https://doi.org/10.1016/0142-9612(90)90067-Z.

    Article  CAS  PubMed  Google Scholar 

  103. Ducheyne P, Radin S, King L. The effect of calcium phosphate ceramic composition and structure onin vitro behavior. I. Dissolution. J Biomed Mater Res. 1993;27:25–34. https://doi.org/10.1002/jbm.820270105.

    Article  CAS  PubMed  Google Scholar 

  104. Bell LC, Mika H, Kruger BJ. Synthetic hydroxyapatite-solubility product and stoichiometry of dissolution. Arch Oral Biol. 1978;23:329–36. https://doi.org/10.1016/0003-9969(78)90089-4.

    Article  CAS  PubMed  Google Scholar 

  105. Yamasaki H, Sakai H. Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs. Biomaterials. 1992;13:308–12. https://doi.org/10.1016/0142-9612(92)90054-R.

    Article  CAS  PubMed  Google Scholar 

  106. Klein C, de Groot K, Chen W, Li Y, Zhang X. Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues. Biomaterials. 1994;15:31–4. https://doi.org/10.1016/0142-9612(94)90193-7.

    Article  CAS  PubMed  Google Scholar 

  107. Van Der Stok J, Van Lieshout EMM, El-Massoudi Y, Van Kralingen GH, Patka P. Bone substitutes in the Netherlands—a systematic literature review. Acta Biomater. 2011;7:739–50. https://doi.org/10.1016/j.actbio.2010.07.035.

    Article  PubMed  CAS  Google Scholar 

  108. Zhang J, Barbieri D, Ten Hoopen H, De Bruijn JD, Van Blitterswijk CA, Yuan H. Microporous calcium phosphate ceramics driving osteogenesis through surface architecture. J Biomed Mater Res A. 2015;103:1188–99. https://doi.org/10.1002/jbm.a.35272.

    Article  PubMed  CAS  Google Scholar 

  109. Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials. 1996;17:31–5. https://doi.org/10.1016/0142-9612(96)80752-6.

    Article  CAS  PubMed  Google Scholar 

  110. Habibovic P, Yuan H, van den Doel M, Sees TM, van Blitterswijk CA, de Groot K. Relevance of osteoinductive biomaterials in critical-sized orthotopic defect. J Orthop Res. 2006;24:867–76. https://doi.org/10.1002/jor.20115.

    Article  CAS  PubMed  Google Scholar 

  111. Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AMC, de Ruiter A, Walsh WR, van Blitterswijk CA, de Bruijn JD. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci U S A. 2010;107:13614–9. https://doi.org/10.1073/pnas.1003600107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Barradas AMC, Yuan H, van Blitterswijk CA, Habibovic P. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater. 2011;21:407–29.

    Article  CAS  PubMed  Google Scholar 

  113. Habibovic P, Yuan H, Van Der Valk CM, Meijer G, Van Blitterswijk CA, De Groot K. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials. 2005;26:3565–75. https://doi.org/10.1016/j.biomaterials.2004.09.056.

    Article  CAS  PubMed  Google Scholar 

  114. Zhang J, Luo X, Barbieri D, Barradas AMC, De Bruijn JD, Van Blitterswijk CA, Yuan H. The size of surface microstructures as an osteogenic factor in calcium phosphate ceramics. Acta Biomater. 2014;10:3254–63. https://doi.org/10.1016/j.actbio.2014.03.021.

    Article  CAS  PubMed  Google Scholar 

  115. Kruyt MC, Dhert WJA, Yuan H, Wilson CE, van Blitterswijk CA, Verbout AJ, de Bruijn JD. Bone tissue engineering in a critical size defect compared to ectopic implantations in the goat. J Orthop Res. 2004;22:544–51. https://doi.org/10.1016/j.orthres.2003.10.010.

    Article  CAS  PubMed  Google Scholar 

  116. Cho DY, Lee WY, Sheu PC, Chen CC. Cage containing a biphasic calcium phosphate ceramic (Triosite) for the treatment of cervical spondylosis. Surg Neurol. 2005;63:497–503. https://doi.org/10.1016/j.surneu.2004.10.016.

    Article  PubMed  Google Scholar 

  117. Cavagna R, Daculsi G, Bouler JM. Macroporous calcium phosphate ceramic: a prospective study of 106 cases in lumbar spinal fusion. J Long-Term Eff Med Implants. 1999;9:403–12. http://www.ncbi.nlm.nih.gov/pubmed/10847976

    CAS  PubMed  Google Scholar 

  118. Nery EB, Lee KK, Czajkowski S, Dooner JJ, Duggan M, Ellinger RF, Henkin JM, Hines R, Miller M, Olson JW. A Veterans Administration Cooperative Study of biphasic calcium phosphate ceramic in periodontal osseous defects. J Periodontol. 1990;61:737–44. https://doi.org/10.1902/jop.1990.61.12.737.

    Article  CAS  PubMed  Google Scholar 

  119. Lindgren C, Mordenfeld A, Johansson CB, Hallman M. A 3-year clinical follow-up of implants placed in two different biomaterials used for sinus augmentation. Int J Oral Maxillofac Implants. 2012;27:1151–62. http://www.ncbi.nlm.nih.gov/pubmed/23057029

    PubMed  Google Scholar 

  120. Delécrin J, Takahashi S, Gouin F, Passuti N. A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective, randomized study. Spine (Phila. Pa. 1976). 2000;25:563–9. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L30158214%5Cnhttp://dx.doi.org/10.1097/00007632-200003010-00006%5Cnhttp://elvis.ubvu.vu.nl:9003/vulink?sid=EMBASE&issn=03622436&id=doi:10.1097/00007632-200003010-00006&atitle=A+synth

    Article  Google Scholar 

  121. Detsch R, Schaefer S, Deisinger U, Ziegler G, Seitz H, Leukers B. In vitro: osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J Biomater Appl. 2011;26:359–80. https://doi.org/10.1177/0885328210373285.

    Article  CAS  PubMed  Google Scholar 

  122. Nishikawa T, Ookura R, Nishida J, Arai K, Hayashi J, Kurono N, Sawadaishi T, Hara M, Shimomura M. Fabrication of honeycomb film of an amphiphilic copolymer at the air-water interface. Langmuir. 2002;18:5734–40. https://doi.org/10.1021/la011451f.

    Article  CAS  Google Scholar 

  123. Sun F, Zhou H, Lee J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 2011;7:3813–28. https://doi.org/10.1016/j.actbio.2011.07.002.

    Article  CAS  PubMed  Google Scholar 

  124. Aboudzadeh N, Imani M, Shokrgozar MA, Khavandi A, Javadpour J, Shafieyan Y, Farokhi M. Fabrication and characterization of poly(D,L-lactide-co-glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. J Biomed Mater Res A. 2010;94:137–45. https://doi.org/10.1002/jbm.a.32673.

    Article  PubMed  CAS  Google Scholar 

  125. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43. https://doi.org/10.1016/S0142-9612(00)00121-6.

    Article  CAS  PubMed  Google Scholar 

  126. Bao M, Wang X, Yuan H, Lou X, Zhao Q, Zhang Y. HAp incorporated ultrafine polymeric fibers with shape memory effect for potential use in bone screw hole healing. J Mater Chem B. 2016;5308:5308–20. https://doi.org/10.1039/c6tb01305h.

    Article  CAS  Google Scholar 

  127. Abe Y, Kokubo T, Yamamuro T. Apatite coating on ceramics, metals and polymers utilizing a biological process. J Mater Sci Mater Med. 1990;1:233–8. https://doi.org/10.1007/BF00701082.

    Article  CAS  Google Scholar 

  128. Lebourg M, Antón JS, Ribelles JLG. Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth. J Mater Sci Mater Med. 2010;21:33–44. https://doi.org/10.1007/s10856-009-3838-6.

    Article  CAS  PubMed  Google Scholar 

  129. Kim HM, Himeno T, Kokubo T, Nakamura T. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials. 2005;26:4366–73. https://doi.org/10.1016/j.biomaterials.2004.11.022.

    Article  CAS  PubMed  Google Scholar 

  130. Qiu ZY, Cui Y, Tao CS, Zhang ZQ, Tang PF, Mao KY, Wang XM, Cui FZ. Mineralized collagen: rationale, current status, and clinical applications. Materials (Basel). 2015;8:4733–50. https://doi.org/10.3390/ma8084733.

    Article  Google Scholar 

  131. Guillaume O, Geven MA, Sprecher CM, Stadelmann VA, Grijpma DW, Tang TT, Qin L, Lai Y, Alini M, de Bruijn JD, Yuan H, Richards RG, Eglin D. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomater. 2017;54:386–8. https://doi.org/10.1016/j.actbio.2017.03.006.

    Article  CAS  PubMed  Google Scholar 

  132. Dorozhkin S. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31:1465–85. https://doi.org/10.1016/j.biomaterials.2009.11.050.

    Article  CAS  PubMed  Google Scholar 

  133. Block MS, Kent JN, Kay JF. Evaluation of hydroxylapatite-coated titanium dental implants in dogs. J Oral Maxillofac Surg. 1987;45:601–7. https://doi.org/10.1016/0278-2391(87)90270-9.

    Article  CAS  PubMed  Google Scholar 

  134. Block MS, Finger IM, Fontenot MG, Kent JN. Loaded hydroxylapatite-coated and grit-blasted titanium implants in dogs. Int J Oral Maxillofac Implants. 1989;4:219–25.

    CAS  PubMed  Google Scholar 

  135. Lum LB, Beirne OR, Curtis DA. Histologic evaluation of hydroxylapatite-coated versus uncoated titanium blade implants in delayed and immediately loaded applications. Int J Oral Maxillofac Implants. 1991;6:456–62. http://www.ncbi.nlm.nih.gov/pubmed/1820315

    CAS  PubMed  Google Scholar 

  136. Geurs NC, Jeffcoat RL, McGlumphy EA, Reddy MS, Jeffcoat MK. Influence of implant geometry and surface characteristics on progressive osseointegration. Int J Oral Maxillofac Implants. 2002;17:811–5. http://www.ncbi.nlm.nih.gov/pubmed/12507240

    PubMed  Google Scholar 

  137. Morris HF, Ochi S, Spray JR, Olson JW. Periodontal-type measurements associated with hydroxyapatite-coated and non-HA-coated implants: uncovering to 36 months. Ann Periodontol. 2000;5:56–67. https://doi.org/10.1902/annals.2000.5.1.56.

    Article  CAS  PubMed  Google Scholar 

  138. Landor I, Vavrik P, Sosna A, Jahoda D, Hahn H, Daniel M. Hydroxyapatite porous coating and the osteointegration of the total hip replacement. Arch Orthop Trauma Surg. 2007;127:81–9. https://doi.org/10.1007/s00402-006-0235-1.

    Article  PubMed  Google Scholar 

  139. Tanzer M, Gollish J, Leighton R, Orrell K, Giacchino A, Welsh P, Shea B, Wells G. The effect of adjuvant calcium phosphate coating on a porous-coated femoral stem. Clin Orthop Relat Res 2004; (424):153–60. https://doi.org/10.1097/01.blo.0000128282.05708.9a.

    Google Scholar 

  140. Johnston DWC, Davies DM, Beaupré LA, Lavoie G. Standard anatomical medullary locking (AML) versus tricalcium phosphate-coated AML femoral prostheses. Can J Surg. 2001;44:421–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Lekholm U, Zarb G. Patient selection and preparation. In: Brånemark PI, Zarb GA, Albrektsson T, editors. Tissue integrated prostheses—osseointegration in clinical dentistry. Chicago: Quintessance; 1985. p. 199–209. https://doi.org/10.1210/jc.2002-021100.

    Google Scholar 

  142. Lin X, de Groot K, Wang D, Hu Q, Wismeijer D, Liu Y. A review paper on biomimetic calcium phosphate coatings. Open Biomed Eng J. 2015;9:56–64. https://doi.org/10.2174/1874120701509010056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shadanbaz S, Dias GJ. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater. 2012;8:20–30. https://doi.org/10.1016/j.actbio.2011.10.016.

    Article  CAS  PubMed  Google Scholar 

  144. Wang HX, Guan SK, Wang X, Ren CX, Wang LG. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater. 2010;6:1743–8. https://doi.org/10.1016/j.actbio.2009.12.009.

    Article  CAS  PubMed  Google Scholar 

  145. Bose S, Tarafder S, Edgington J, Bandyopadhyay A. Calcium phosphate ceramics in drug delivery. JOM. 2011;63:93–8. https://doi.org/10.1007/s11837-011-0065-7.

    Article  CAS  Google Scholar 

  146. Ardura JA, Portal-Núñez S, Lozano D, Gutiérrez-Rojas I, Sánchez-Salcedo S, López-Herradón A, Mulero F, Villanueva-Peñacarrillo ML, Vallet-Regí M, Esbrit P. Local delivery of parathyroid hormone-related protein-derived peptides coated onto a hydroxyapatite-based implant enhances bone regeneration in old and diabetic rats. J Biomed Mater Res A. 2016;104:2060–70. https://doi.org/10.1002/jbm.a.35742.

    Article  CAS  PubMed  Google Scholar 

  147. Shi P, Wang Q, Yu C, Fan F, Liu M, Tu M, Lu W, Du M. Hydroxyapatite nanorod and microsphere functionalized with bioactive lactoferrin as a new biomaterial for enhancement bone regeneration. Colloids Surf B Biointerfaces. 2017;155:477–89. https://doi.org/10.1016/j.colsurfb.2017.04.042.

    Article  CAS  PubMed  Google Scholar 

  148. Curtin CM, Cunniffe GM, Lyons FG, Bessho K, Dickson GR, Duffy GP, O’Brien FJ. Innovative collagen nano-hydroxyapatite scaffolds offer a highly efficient non-viral gene delivery platform for stem cell-mediated bone formation. Adv Mater. 2012;24:749–54. https://doi.org/10.1002/adma.201103828.

    Article  CAS  PubMed  Google Scholar 

  149. Hanifi A, Fathi MH, Sadeghi HM, Varshosaz J. Mg2+ substituted calcium phosphate nano particles synthesis for non viral gene delivery application. J Mater Sci Mater Med. 2010;21:2393–401. https://doi.org/10.1007/s10856-010-4088-3.

    Article  CAS  PubMed  Google Scholar 

  150. Quinlan E, Thompson EM, Matsiko A, O’Brien FJ, López-Noriega A. Long-term controlled delivery of rhBMP-2 from collagen-hydroxyapatite scaffolds for superior bone tissue regeneration. J Control Release. 2015;207:112–9. https://doi.org/10.1016/j.jconrel.2015.03.028.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Professor Xingdong Zhang (National Engineering Research Center for Biomaterials, Sichuan University) for providing insightful comments to this manuscript. The author is grateful to Professor Kai Zhang and Xiangdong Zhu from our research center for their technical guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, X. (2017). Hydroxyapatite: Design with Nature. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-73664-8_6

Download citation

Publish with us

Policies and ethics