Skip to main content

Equisingularity and the Theory of Integral Closure

  • Conference paper
  • First Online:
Book cover Singularities and Foliations. Geometry, Topology and Applications (NBMS 2015, BMMS 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 222))

Abstract

This is an introduction to the study of the equisingularity of sets using the theory of the integral closure of ideals and modules as the main tool. It introduces the notion of the landscape of a singularity as the right setting for equisingularity problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buchsbaum, D.A., Rim, D.S.: A generalized Koszul complex. II. Depth and multiplicity. Trans. AMS 111, 197–224 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buchweitz, R., Greuel, G.: The Milnor number of complex curve singularities. Invent. Math. 58, 241–281 (1980)

    Google Scholar 

  3. Damon, J., Pike, B.: Solvable groups, free divisors and nonisolated matrix singularities II: vanishing topology. Geom. Topol. 18(2), 911–962 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dutertre, N.: Stratified critical points on the real milnor fibre and integral-geometric formulas. In: Proceedings of Geometry and Topology of Singular Spaces, CIRM (2012) (J. Singul. 13, 87–106 (2015)

    Google Scholar 

  5. Frühbis-Krüger, A., Zach, M.: On the vanishing topology of isolated Cohen–Macaulay codimension 2 singularities (2015)

    Google Scholar 

  6. Gaffney, T.: The multiplicity polar theorem. arXiv:math/0703650v1 [math.CV] (2007)

  7. Gaffney, T., Rangachev, A.: Pairs of modules and determinantal isolated singularities. arXiv:1501.00201 (2017)

  8. Gaffney, T.: Duality of polar multiplicities, manuscript (2016)

    Google Scholar 

  9. Gaffney, T.: Integral closure of modules and Whitney equisingularity. Invent. Math. 107, 301–322 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gaffney, T.: Generalized Buchsbaum–Rim multiplicities and a Theorem of Rees. Commun. Algebra 31, 3811–3828 (2003)

    Article  MATH  Google Scholar 

  11. Gaffney, T.: Polar methods, invariants of pairs of modules and equisingularity. In: Gaffney, T., Ruas, M. (eds.) Real and Complex Singularities (São Carlos, 2002). Contemporary Mathematics, vol. 354, pp. 113–136. American Mathematical Society, Providence (2004)

    Chapter  Google Scholar 

  12. Gaffney, T.: The multiplicity of pairs of modules and hypersurface singularities. In: Brasselet, J.-P., Ruas, M.A.S. (eds.) Real and Complex Singularities (São Carlos VIII). Trends in Mathematics, pp. 143–168. Birkhäuser, Basel (2007)

    Chapter  Google Scholar 

  13. Gaffney, T.: The Multiplicity polar theorem and isolated singularities. J. Algebr. Geom. 18(3), 547–574 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gaffney, T.: Bi-Lipschitz equivalence, integral closure and invariants. Real and Complex Singularities. London Mathematical Society Lecture Note Series, vol. 380, pp. 125–137. Cambridge University Press, Cambridge (2010)

    Chapter  Google Scholar 

  15. Gaffney, T.: The genericity of the infinitesimal Lipschitz condition for hypersurfaces. J. Singul. 10, 108–123 (2017)

    Google Scholar 

  16. Gaffney, T., Gassler, R.: Segre numbers and hypersurface singularities. J. Algebr. Geom. 8, 695–736 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Gaffney, T., Kleiman, S.: Specialization of integral dependence for modules. Invent. Math. 137, 541–574 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gaffney, T., Vitulli, M.: Weak subintegral closure of ideals. Adv. Math. 226(3), 2089–2117 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gaffney, T., Grulha Jr., N.: The multiplicity polar theorem, collections of 1-forms and Chern numbers. J. Singul. 7, 39–60 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Gaffney, T., Ruas, M.A.S.: Equisingularity and EIDS. arXiv:1602.00362 (2016)

  21. Gaffney, T., Grulha Jr., N.G, Ruas, M.A.S.: The local Euler obstruction and topology of the stabilization of associated determinantal varieties. arXiv:1611.00749 (2016)

  22. Gibson, G.C., Looijenga, E., du Plessis, A., Wirthmuller, K.: Topological Stability of Smooth Maps, SLN #555. Springer, New York (1976)

    Book  MATH  Google Scholar 

  23. Gunning, R.C.: Lectures on Complex Analytic Varieties: The Local Parametrization Theorem. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  24. Kleiman, S.: Personal correspondence (2017)

    Google Scholar 

  25. Kleiman, S.: Two formulas for the BR multiplicity. Ann. Univ. Ferrara 63, 147–158 (2017). https://doi.org/10.1007/s11565-016-0250-2

  26. Kleiman, S., Thorup, A.: A geometric theory of the Buchsbaum–Rim multiplicity. J. Algebra 167, 168–231 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kleiman, S., Thorup, A.: The exceptional fiber of a generalized conormal space. In: Siersma, D., Wall, C.T.C., Zakalyukin, V. (eds.) New Developments in Singularity Theory. Nato Science series, II Mathematics, Physics and Chemistry, vol. 21, pp. 401–404. Kluwer Academic Publishers, Dodrecht (2001)

    Google Scholar 

  28. Lejeune-Jalabert, M., Teissier, B.: Cloture intégrale des idéaux et èquisingularité, avec 7 compléments. Annales de la Faculté des Sciences de Toulouse XVII(4), 781–859 (2008)

    Article  MATH  Google Scholar 

  29. Moonen, B.: The fundamental cycle of a coherent analytic sheaf and polar multiplicities as limits of curvature integrals, Mathematisches Institut der Universitat zu Krln, Im Weyertal, pp. 86–90, 5000 Krln 40, W. Germany (1985)

    Google Scholar 

  30. Nari, H., Numata, T., Watanabe, K.: Genus of numerical semigroups generated by three elements. arXiv:1104.3600 [math.GR] (2011)

  31. Nuño-Ballesteros, J.J., Mond, D.: Singularities of Mappings. Book in draft. http://homepages.warwick.ac.uk/~masbm/LectureNotes/book.pdf (2016)

  32. Nuño-Ballesteros, J.J., Orfice-Okamoto, B., Tomazella, J.N.: The vanishing Euler characteristic of an isolated determinantal singularity. Isr. J. Math. 197(1), 475–495 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rangachev, A.: Associated points and integral closure of modules. arXiv:1607.07979 [math.AG] (2016)

  34. Saia, M.: The integral closure of ideals and the Newton filtration. J. Algebr. Geom. 5(#1), 1–11 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Swanson, I., Huneke, C.: Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note series, vol. 336. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  36. Teissier, B., Flores, A.: Local polar varieties in the geometric study of singularities. arXiv:1607.07979 [math.AG] (2016)

  37. Teissier, B.: The hunting of invariants in the geometry of the discriminant. In: Holm, P. (ed.) Real and Complex Singularities, Oslo 1976, pp. 565–678. Sijthoff & Noordhoff, Alphen aan den Rijn (1977)

    Chapter  Google Scholar 

  38. Teissier, B.: Multiplicités polaires, sections planes, et conditions de Whitney. In: Aroca, J.M., Buchweitz, R., Giusti M., Merle M. (eds.) Proceedings La Rábida, 1981. Lecture Notes in Mathematics, vol. 961, pp. 314–491. Springer, Berlin (1982)

    Google Scholar 

  39. Teissier, B.: Monômes, volumes et multiplicités. (French) [Monomials, volumes and multiplicities] Introduction à la théorie des singularités, II, vol. 37, pp. 127–141, Travaux en Cours, Hermann, Paris (1988)

    Google Scholar 

  40. Zach, M.: Vanishing cycles of smoothable isolated Cohen–Macaulay codimension 2 singularities of type 2. arXiv:1607.07527 (2016)

  41. Zariski, O.: Presidential address. Bull. A.M.S. 77(4), 481–491 (1971)

    Article  Google Scholar 

Download references

Acknowledgements

The author was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, Brazil, grant PVE 401565/2014-9. These lectures grew out of a short course of lectures given at the Universidade Federal Fluminense in January of 2015. It is pleasure to thank these institutions for their support. I also thank two individuals who had a strong impact on shaping my thinking on the subject–Steven Kleiman and Bernard Teissier. Their contributions to this work will be obvious to any serious reader. I also thank Steven Kleiman for several helpful comments which improved the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence Gaffney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaffney, T. (2018). Equisingularity and the Theory of Integral Closure. In: Araújo dos Santos, R., Menegon Neto, A., Mond, D., Saia, M., Snoussi, J. (eds) Singularities and Foliations. Geometry, Topology and Applications. NBMS BMMS 2015 2015. Springer Proceedings in Mathematics & Statistics, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-319-73639-6_3

Download citation

Publish with us

Policies and ethics