Skip to main content

Physiological Role of Heat Shock Proteins, Molecular Function and Stress Removal in Fishes

  • Chapter
  • First Online:
Heat Shock Proteins in Veterinary Medicine and Sciences

Part of the book series: Heat Shock Proteins ((HESP,volume 12))

  • 728 Accesses

Abstract

Depending on the size, the specific locations and physiological roles of molecular chaperones differ within the cell. However, to tolerate stress HSP drives molecular mechanisms in animals. These proteins interact with multiple systems in diverse ways regulated by the endocrine system. HSP have crucial physiological roles in fish. The important role of HSP is in thermo tolerance as well as tolerance to cytotoxic effects of environmental contaminants and other stressors which are non thermal. HSP enhances immune response through both intra- and extra-cellular activities. Similarly, many studies have proved that most HSP are molecular chaperones which funtion for other cell proteins, and have better cytoprotective effects. To know more about factors, both biotic and abiotic regulating heat shock proteins data has been collected rapidly. However, earlier reports are focused on the role of HSP in development and their importance in fish in nature. Functional genomic approaches will provide the tools necessary to gain a comprehensive understanding of the significance of heat shock proteins in the cellular stress response, in the physiological processes. Heat shock proteins are considerably adaptable and potent molecules, the significance of which to biological procedures is highlighted by the high degree to which their structure and function are phylogenetically preserved. Our knowledge regarding physiological role of heat shock proteins is presently partial; though, a better understanding of their function and thus the skills of the capacity to control their power may lead to their use as therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

GAV:

Gill-associated virus

Hsc:

Heat shock cognates

HSF:

Heat shock transcription factors

HSP:

Heat shock proteins

HSR:

Heat shock response

LPS:

Lipopolysaccharide

MT:

Metallothionein

TSD:

Temperature-dependent sex determination

UV:

Ultra violet

WSSV:

White spot syndrome virus

References

  • Ait-Aıssa, S., Ausseil, O., Palluel, O., Vindimian, E., Garnier-Laplace, J., & Porcher, J. (2003). Biomarker responses in juvenile rainbow trout (Oncorhynchus mykiss) after single and combined exposure to low doses of cadmium, zinc, PCB77 and 17-oestradiol. Biomarkers, 8(6), 491–508.

    Google Scholar 

  • Amiard, J. C., Amiard-Triquet, C., Barka, S., Pellerin, J., & Rainbow, P. S. (2006). Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers. Aquatic Toxicology, 76(2), 160–202.

    Article  CAS  PubMed  Google Scholar 

  • Ao, J., Mu, Y., Xiang, L. X., Fan, D., Feng, M., Zhang, S., et al. (2015). Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation. PLoS Genetics, 11, 1–25.

    Article  CAS  Google Scholar 

  • Baird, N. A., Turnbull, D. W., & Johnson, E. A. (2006). Induction of the heat shock pathway during hypoxia requires regulation of heat shock factor by hypoxia-inducible factor-1. The Journal of Biological Chemistry, 281(50), 38675–38681.

    Article  CAS  PubMed  Google Scholar 

  • Bakthisaran, R., Tangirala, R., & Mohan Rao, C. (2015). Small heat shock proteins: Role in cellular functions and pathology. Biochemica et Biophysica Acta, 1854, 291–319.

    Article  CAS  Google Scholar 

  • Barnes, J. A., Collins, B. W., Dix, D. J., & Allen, J. W. (2002). Effects of heat shock protein 70 (HSP70) on arsenite-induced genotoxicity. Environmental and Molecular Mutagenesis, 40, 236–242.

    Article  CAS  PubMed  Google Scholar 

  • Basu, N., Todgham, A. E., Ackerman, P. A., Bibeau, M. R., Nakano, K., Schulte, P. M., et al. (2002). Heat shock protein genes and their functional significance in fish. Gene, 295, 173–183.

    Article  CAS  PubMed  Google Scholar 

  • Basu, N., Kennedy, C. J., & Iwama, G. K. (2003). The effects of stress on the association between Hsp70 and the glucocorticoid receptor in rainbow trout. Comparative Biochemistry and Physiology, 134, 655–663.

    Article  CAS  PubMed  Google Scholar 

  • Bears, H., Richards, J. G., & Schulte, P. M. (2006). Arsenic exposure alters hepatic arsenic species composition and stress-mediated gene expression in the common killifish (Fundulus heteroclitus). Aquatic Toxicology, 77, 257–266.

    Article  CAS  PubMed  Google Scholar 

  • Beere, H. M., Wolf, B. B., Cain, K., Mosser, D. D., Mahboubi, A., Kuwana, T., Morimiti, R. I., Cohen, G. M., & Green, D. R. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology, 2, 469–475.

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Penedo, I., Cruz, J. M., Lopez-Alonse, M., Miranda, M., Castillo, C., Hernandez, J., & Benedito, J. L. (2006). Influence of copper status on the accumulation of toxic and essential metals in cattle. Environment International, 32, 901–906.

    Article  CAS  PubMed  Google Scholar 

  • Boone, A. N., & Vijayan, M. M. (2002). Constitutive heat shock protein 70 (HSC70) expression in rainbow trout hepatocytes: Effect of heat shock and heavy metal exposure. Comparative Biochemistry and Physiology C: Toxicology and Pharmacology, 132(2), 223–233.

    PubMed  Google Scholar 

  • Boulangé-Lecomte, C., Forget-Leray, J., & Xuereb, B. (2014). Sexual dimorphism in Grp78 and HSP90A heat shock protein expression in the estuarine copepod Eurytemora affinis. Cell Stress & Chaperones, 19(4), 591–597.

    Article  CAS  Google Scholar 

  • Brett, J. R. (1971). Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). American Zoologist, 11, 99–113.

    Article  Google Scholar 

  • Bukau, B., & Horwich, A. L. (1998). The HSP70 and HSP60 chaperone machines. Cell, 92(3), 351–366.

    Article  CAS  PubMed  Google Scholar 

  • Bukau, B., Deuerling, E., Pfund, C., & Craig, E. A. (2000). Getting newly synthesized proteins into shape. Cell, 101(2), 119–122.

    Article  CAS  PubMed  Google Scholar 

  • Calabrese, V., Butterfield, D. A., Scapagnini, G., Stella, A. M., & Maines, M. D. (2006). Redox regulation of heat shock protein expression by signaling involving nitric oxide and carbon monoxide: Relevance to brain aging, neurodegenerative disorders, and longevity. Antioxidants & Redox Signaling, 8, 444–477.

    Article  CAS  Google Scholar 

  • Candido, E. P., & Jones, D. (1996). Transgenic Caenorhabditis elegans strains as biosensors. Trends in Biotechnology, 14(4), 125–129.

    Article  CAS  PubMed  Google Scholar 

  • Carrasco-Malio, A., Díaz, M., Mella, M., Montoya, M. J., Miranda, A., Landaeta, M. F., Sánchez, G., & Hidalgo, M. E. (2014). Are the intertidal fish highly resistant to UV-B radiation? A study based on oxidative stress in Girella laevifrons (Kyphosidae). Ecotoxicology and Environmental Safety, 100, 93–98.

    Article  CAS  PubMed  Google Scholar 

  • Cechetto, J. D., Soltys, B. J., & Gupta, R. S. (2000). Localization of mitochondrial 60-kD heat shock chaperonin protein (HSP60) in pituitary growth hormone secretory granules and pancreatic zymogen granules. The Journal of Histochemistry and Cytochemistry, 48, 45–56.

    Article  CAS  PubMed  Google Scholar 

  • Chale, F. M. M. (2002). Trace metal concentrations in water, sediments and fish tissue from Lake Tanganyika. The Science of the Total Environment, 299, 115–121.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y. M., Kuo, C. E., Wang, T. Y., Shie, P. S., Wang, W. C., Huang, S. L., et al. (2010). Cloning of an orange-spotted grouper Epinephelus coioides heat shock protein 90AB (HSP90AB) and characterization of its expression in response to noda virus. Fish & Shellfish Immunology, 28, 895–904.

    Article  CAS  Google Scholar 

  • Chen, H. H., Zha, J. M., Liang, X. F., Bu, J. H., Wang, M., & Wang, Z. J. (2013). Sequencing and de novo assembly of the Asian clam (Corbicula fluminea) transcriptome using the Illumina GAIIx method. PLoS One, 8(11), e79516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, P., Liu, X., Zhang, G., & Deng, Y. (2006). Heat-shock protein 70 gene expression in four hatchery Pacific abalone Haliotis Discus Hannai Ino populations using for marker-assisted selection. Aquaculture Research, 37, 1290–1296.

    Article  CAS  Google Scholar 

  • Choi, Y. K., Jo, P. G., & Choi, C. Y. (2008). Cadmium affects the expression of heat shock protein 90 and metallothionein mRNA in the Pacific oysterCrassostrea gigas. Comparative Biochemistry Physiology Part C, 147, 286–292.

    PubMed  Google Scholar 

  • Chowdhuri, D. K., Saxena, D. K., & Vishwanathan, P. N. (1999). Effect of hexachlorocyclohexane (HCH), its isomers, and metabolites on HSP70 expression in transgenic Drosophila melanogaster. Pesticide. Biochemistry & Physiology, 63(1), 15–25.

    CAS  Google Scholar 

  • Clark, M. S., & Peck, L. S. (2009). Triggers of the HSP70 stress response: Environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna). Cell Stress & Chaperones, 14, 649–660.

    Article  CAS  Google Scholar 

  • Cotto, J. J., & Morimoto, R. I. (1999). Stress-induced activation of the heat-shock response: Cell and molecular biology of heat-shock factors. Biochemical Society Symposium, 64, 105–118.

    CAS  PubMed  Google Scholar 

  • Croute, F., Beau, B., Arrabit, C., Gaubin, Y., Delmas, F., Murat, J. C., & Soeilhavoup, J. P. (2000). Pattern of stress protein expression in human lung cell-line A549 after short or long term exposure to cadmium. Environmental Health Perspectives, 108(1), 55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, Z., Liu, Y., Luan, W., Li, Q., Wu, D., & Whang, S. (2010). Molecular cloning and characterization of a heat shock protein 70 gene in swimming crab (Portunustri tuberculatus). Fish & Shellfish Immunology, 28, 56–64.

    Article  CAS  Google Scholar 

  • Dahms, H. U., & Lee, J. S. (2010). UV radiation in marine ectoderms: Molecular effects and response. Aquatic Toxicology, 97, 3–14.

    Article  CAS  PubMed  Google Scholar 

  • Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., & Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta, International Journal of Clinical Chemistry, 29(1–2), 23–38.

    Article  CAS  Google Scholar 

  • Deane, E. E., & Woo, N. Y. (2006). Impact of heavy metals and organochlorines on hsp70 and hsc70 gene expression in black sea bream fibroblasts. Aquatic Toxicology, 79, 9–15.

    Article  CAS  PubMed  Google Scholar 

  • De Maio, A. (1999). Heat shock proteins: Facts, thoughts, and dreams. Shock, 11, 1–12.

    Article  PubMed  Google Scholar 

  • De Maio, A., Santoro, M. G., Tanguay, R. M., & Hightower, L. E. (2012). Ferruccio Ritossa’s scientific legacy 50 years after his discovery of the heat shock response: A new view of biology, a new society, and a new journal. Cell Stress & Chaperones, 17, 139–143.

    Article  CAS  Google Scholar 

  • Didier, P. (2006). Chaperoning steroid hormone action. Trends in Endocrinology and Metabolism, 17(6), 229–235.

    Article  CAS  Google Scholar 

  • Dimauro, I., Mercatelli, N., & Caporossi, D. (2016). Exercise-induced ROS in heat shock proteins response. Free Radical Biology & Medicine, 98, 46–55.

    Article  CAS  Google Scholar 

  • Diniz, M. S., Santos, H. M., Costa, P. M., Peres, I., Costa, M. H., & Capelo, J. L. (2007). Metallothionein responses in the Asiatic clam (Corbicula fluminea) after exposure to trivalent arsenic. Biomarkers, 12, 589–598.

    Article  CAS  PubMed  Google Scholar 

  • Dix, D. J., Allen, J. W., Collins, B. W., Mori, C., Nakamura, N., Poorman-Allen, P., Goulding, E. H., & Eddy, E. M. (1996). Targeted gene disruption of HSP70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proceedings of the National Academy of Sciences of the United States of America, 93(8), 3264–3268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downs, C. A., Richmond, R. H., Mendiola, W. J., Rougée, L., & Ostrander, G. K. (2006). Cellular physiological effects of the MV Kyowa violet fuel-oil spill on the hard coral Porites lobata. Environmental Toxicology and Chemistry, 25(12), 3171–3180.

    Article  CAS  PubMed  Google Scholar 

  • Du, S. J., Li, H., Bian, Y., & Zhong, Y. (2008). Heat-shock protein 90alpha1 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos. Proceedings of the National Academy of Sciences of the United States of America, 105, 554–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dube, V., Grigull, J., DeSouza, L. V., Ghanny, S., Colgan, T. J., Romaschin, A. D., & Siu, K. W. (2007). Verification of endometrial tissue biomarkers previously discovered using mass spectrometry-based proteomics by means of immunohistochemistry in a tissue microarray format. Journal of Proteome Research, 6, 2648–2655.

    Article  CAS  PubMed  Google Scholar 

  • Ehrnsperger, M., Gräber, S., Gaestel, M., & Buchner, J. (1997). Binding of non-native protein to HSP25 during heat shock creates a reservoir of folding intermediates for reactivation. The EMBO Journal, 16, 221–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eliason, E. J., Clark, T. D., Hague, M. J., Hanson, L. M., Gallagher, Z. S., Jeffries, K. M., et al. (2011). Differences in thermal tolerance among sockeye salmon populations. Science, 332, 109–112.

    Article  CAS  PubMed  Google Scholar 

  • Feder, M. E., & Hofmann, G. E. (1999). Heat shock proteins, molecular chaperons, and the stress response: Evolutionary and ecological physiology. Annual Review of Physiology, 61, 243–282.

    Article  CAS  PubMed  Google Scholar 

  • Feng, J., Guan, R., Guo, S., Lin, P., & Zadlock, F. (2014). Molecular cloning of Japanese eel Anguilla japonica TNF-αand characterization of its expression in response to LPS, poly I:C and Aeromonas hydrophila infection. Chinese Journal of Oceanology and Limnology, 32, 1046–1059.

    Article  CAS  Google Scholar 

  • Forsyth, R. B., Candido, E. P. M., Babich, S. L., & Iwama, G. K. (1997). Stress protein expression in coho salmon with bacterial kidney disease. Journal of Aquatic Animal Health, 9, 18–25.

    Article  Google Scholar 

  • Gao, Q., Zhao, J., Song, L., Qiu, L., Yu, Y., Zhang, H., et al. (2008). Molecular cloning, characterization and expression of heat shock protein 90 gene in the haemocytes of bay scallop Argopecten irradians. Fish & Shellfish Immunology, 24, 379–385.

    Article  CAS  Google Scholar 

  • Garrido, C., Gurbuxani, S., Ravagnan, L., & Kroemer, G. (2001). Heat shock proteins: Endogenous modulators of apoptotic cell death. Biochemical and Biophysical Research Communications, 286(3), 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Gething, M. J., & Sambrook, J. (1992). Protein folding in the cell. Nature, 355, 35–45.

    Article  Google Scholar 

  • Ghosh, J. G., Estrada, M. R., & Clark, J. I. (2005). Interactive domains for chaperone activity in the small heat shock protein, human alpha B crystallin. The Biochemist, 44, 14854–14869.

    Article  CAS  Google Scholar 

  • Giri, S. S., Sen, S. S., & Sukumaran, V. (2014). Role of HSP70 in cytoplasm protection against thermal stress in rohu, Labeo rohita. Fish & Shellfish Immunology, 41, 294–299.

    Article  CAS  Google Scholar 

  • Giri, S. S., Sen, S. S., Jun, J. W., Sukumaran, V., & Park, S. C. (2016). Immunotoxicological effects of cadmium on Labeo rohita, with emphasis on the expression of HSP genes. Fish & Shellfish Immunology, 54, 164–171.

    Article  CAS  Google Scholar 

  • Govin, J., Caron, C., Escoffier, E., Ferro, M., Kuhn, L., Rousseaux, S., et al. (2006). Post meiotic shifts in HSPA2/HSP70.2 chaperone activity during mouse spermatogenesis. The Journal of Biological Chemistry, 281, 37888–37892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groff, A. A., da Silva, J., Nunes, E. A., Ianistcki, M., Guecheva, T. N., de Oliveira, A. M., et al. (2010). UVA/UVB induced genotoxicty and lesion repair in Colossoma macropomum and Arapaima gigas Amazonian fish. Journal of Photochemistry Photobiology Part B, 99, 93–99.

    Article  CAS  Google Scholar 

  • Grosvik, B. E., & Goksoy, A. (1996). Biomarker protein expression in primary cultures of salmon (Salmo salar) hepatocytes exposed to environmental pollutants. Biomarkers, 1, 45–53.

    Article  CAS  PubMed  Google Scholar 

  • Guo, S. L., Feng, J. J., Yang, Q. H., Guan, R. Z., Wang, Y., & Lu, P. P. (2014). Immune effects of bathing European eels in live pathogenic bacteria, Aeromonas hydrophila. Aquaculture Research, 45, 913–921.

    Article  CAS  Google Scholar 

  • Gupta, S. C., Siddique, H. R., Mathur, N., Mishra, R. K., Mitra, K., Saxena, D. K., et al. (2007). Adverse effect of organophosphate compounds dichlorvos and chlorpyrifos in the reproductive tissues of transgenic Drosophila Melanogaster: 70 kDa heat shock protein as a marker of cellular damage. Toxicology, 238(1), 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Hader, D. P., Kumar, H. D., Smith, R. C., & Worrest, R. C. (2007). Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochemical & Photobiological Sciences, 6, 267–285.

    Article  Google Scholar 

  • Hallare, A. V., Köhler, H. R., & Triebskorn, R. (2004). Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemospher, 56, 659–666.

    Article  CAS  Google Scholar 

  • Han, D., Huang, S. S. Y., Wang, W.-F., Deng, D.-F., & Hung, S. S. O. (2011). Starvation reduces the heat shock protein responses in white sturgeon larvae. Environmental Biology of Fishes, 93, 333–342.

    Article  Google Scholar 

  • Han, Y. L., Hou, C. C., Du, C., & Zhu, J. Q. (2017). Molecular cloning and expression analysis of five heat shock protein 70 (HSP70) family members in Lateolabrax maculatus with Vibro harveyi infection. Fish & Shellfish Immunology, 60, 299–310.

    Article  CAS  Google Scholar 

  • Harms, L., Frickenhaus, S., Schiffer, M., Mark, F. C., Storch, D., Held, C., et al. (2014). Gene expression profiling in gills of the great spider crab Hyas araneus in response to ocean acidification and warming. BMC Genomics, 15, 789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartl, F. U. (1996). Molecular chaperones in cellular protein folding. Nature, 381, 571–579.

    Article  CAS  PubMed  Google Scholar 

  • Hartl, F. U., & Hartl-Meyer, M. (2002). Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 295, 1852–1858.

    Article  CAS  PubMed  Google Scholar 

  • Hassanein, H. M. A., Banhawy, M. A., Soliman, F. M., Abdel- Rehim, S. A., & Muller, W. E. G. (1999). Induction of HSP70 by the herbicide oxyfluoren in the Egyptian Nile fish, Oreochromis niloticus. Archives Environ Contamin. Toxicology, 37, 78–84.

    CAS  Google Scholar 

  • Hatfield, M. P., & Lovas, S. (2012). Role of HSP70 in cancer growth and survival. Protein and Peptide Letters, 19, 616–624.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins, T. A., Haramis, A. P., Etard, C., Prodromou, C., Vaughan, C. K., Ashworth, R., et al. (2008). The ATPase-dependent chaperoning activity of HSP90a regulates thick filament formation and integration during skeletal muscle myofibrillogenesis. Development, 135, 1147–1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, Y., Luo, M., Yi, M., Sheng, Y., Cheng, Y., Zhou, R., et al. (2013). Identification of a testis enriched heat shock protein and fourteen members of HSP70 family in the swamp eel. PLoS One, 8, e65269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath, A. G. (1987). Water pollution and fish physiology. Florida: CRC Press.

    Google Scholar 

  • Henderson, B. (2003). Chaperonins: Chameleon proteins that influence myeloid cells. In W. van Eden (Ed.), Heat shock proteins and inflammation (pp. 175–192). Basle: Birkhauser.

    Chapter  Google Scholar 

  • Henderson, B., Allan, E., & Coates, A. R. (2006). Stress wars: The direct role of host and bacterial molecular chaperones in bacterial infection. Infection and Immunity, 74, 3693–3706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrikson, Ronald G., and Zenoble, Robert D. (1983). Vibriosis in fish: A review, Iowa state university Veterinarian: 45(1), Article 5.

    Google Scholar 

  • Hermesz, E., Abraham, M., & Nemcsok, J. (2001). Identification of two HSP90 genes in carp. Comparative Biochemistry Physiology Part C, 129, 397–407.

    CAS  PubMed  Google Scholar 

  • Hightower, L. E., Sadis, S. E., & Takenaka, I. O. (1994). Interactions of vertebrate hsc70 and HSP70 with unfolded proteins and peptides. In R. I. Morimoto, A. Tissieres, & C. Georgopoulos (Eds.), The biology of heat shock proteins and molecular Chaperones (pp. 109–208). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Holm, K., Hernroth, B., & Thorndyke, M. (2008). Coelomocyte numbers and expression of HSP70 in wounded sea stars during hypoxia. Cell Tissue Research, 334, 319–325.

    Article  CAS  PubMed  Google Scholar 

  • Hook, S. E., Skillman, A. D., Small, J. A., & Schultz, I. R. (2006). Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants. Aquatic Toxicology, 77(4), 372–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, P., Kang, S., Chen, W., Hsu, T., Lo, C., Liu, K., & Chen, L. (2008). Identification of the small heat shock proteins HSP21, of shrimp Penaeus monodon and the gene expression of HSP21 is inactivated after white spot syndrome virus (WSSV) infection. Fish & Shellfish Immunology, 25, 250–257.

    Article  CAS  Google Scholar 

  • Huang, W. J., Leu, J. H., Tsau, M. T., Chen, J. C., & Chen, L. L. (2011). Differential expression of LvHSP60 in shrimp in response to environmental stress. Fish & Shellfish Immunology, 30, 576–582.

    Article  CAS  Google Scholar 

  • Hughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicology Letters, 133, 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Imlay, J. A., & Linn, S. (1988). DNA damage and oxygen radical toxicity. Science, 240, 1302–1309.

    Article  CAS  PubMed  Google Scholar 

  • Ingolia, T. D., & Craig, E. A. (1982). Drosophila gene related to the major heat shock induced gene is transcribed at normal temperatures and not induced by heat shock. Proceedings of the National Academy of Sciences of the United States of America, 79, 525–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwama, G. K., Vijayan, M. M., Forsyth, R. B., & Ackerman, P. A. (1999). Heat shock proteins and physiological stress in fish. Integrative and Comparative Biology, 39(6), 901–909.

    CAS  Google Scholar 

  • Iwama, G. K., Afonso, L. O. B., Todgham, A., Ackerman, P., & Nakano, K. (2004). Are HSP suitable for indicating stressed states in fish. The Journal of Experimental Biology, 207, 15–19.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, S. E. (2013). HSP90: Structure and function. Topics in Current Chemistry, 328, 155–240.

    Article  CAS  PubMed  Google Scholar 

  • Jacquier-Sarlin, M. R., & Polla, B. S. (1996). Dual regulation of heat-shock transcription factor (HSF) activation and DNA-binding activity by H2O2: Role of thioredoxin. The Biochemical Journal, 318, 187–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jee, H. (2016). Size dependent classification of heat shock proteins: A mini-review. Journal of Exercise Rehabilitation, 12(4), 255–259.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang, S., Qiu, L., Zhou, F., Huang, J., Guo, Y., & Yang, K. (2009). Molecular cloning and expression analysis of a heat shock protein (HSP90) gene from black tiger shrimp (Penaeus monodon). Molecular Biology Reports, 36, 127–134.

    Article  CAS  PubMed  Google Scholar 

  • Jing, J., Liu, H., Chen, H., Hu, S., Xiao, K., & Ma, X. (2013). Acute effect of copper and cadmium exposure on the expression of heat shock protein 70 in the Cyprinidae fish Tanichthys albonubes. Chemosphere, 91, 1113–1122.

    Article  CAS  PubMed  Google Scholar 

  • Jiravanichpaisal, P., Lee, B. L., & Söderhäll, K. (2006). Cell-mediated immunity in arthropods: Hematopoiesis, coagulation, melanization and opsonization. Immunobiology, 211, 213–236.

    Article  CAS  PubMed  Google Scholar 

  • Jonak, C., Klosner, G., & Trautinger, F. (2006). Heat shock proteins in the skin. International Journal of Cosmetic Science, 28, 233–241.

    Article  CAS  PubMed  Google Scholar 

  • Juo, L. Y., Liao, W. C., Shih, Y. L., Yang, B. Y., Liu, A. B., & Yan, Y. T. (2016). HSPB7 interacts with dimerized FLNC and its absence results in progressive myopa thy in skeletal muscles. Journal of Cell Science, 129, 1661–1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaarniranta, K., Elo, M., Sironen, R., Lammi, M. J., Goldring, M. B., Eriksson, J. E., et al. (1998). HSP70 accumulation in chondrocytic cells exposed to high continuous hydrostatic pressure coincides with mRNA stabilization rather than transcriptional activation. Proceedings of the National Academy of Sciences of the United States of America, 95, 2319–2324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaarniranta, K., Oksala, N., Karjalainen, H. M., Suuronen, T., Sistonen, L., Helminen, H. J., et al. (2002). Neuronal cells show regulatory differences in the HSP70 gene response. Brain Research, 101, 136–140.

    Article  CAS  PubMed  Google Scholar 

  • Kampinga, H. H., Hageman, J., Vos, M. J., Kubota, H., Tanguay, R. M., Bruford, E. A., et al. (2009). Guidelines for the nomenclature of the human heat shock proteins. Cell Stress & Chaperones, 14, 105–111.

    Article  CAS  Google Scholar 

  • Kappe, G., Verschuure, P., Philipsen, R. L., Staalduinen, A. A., Van de Boogaart, P., Boelens, W. C., et al. (2001). Characterization of two novel human small heat shock proteins: Protein kinase-related HSPB8 and testis-specific HSPB9. Biochimica et Biophysica Acta, 1520, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Katersky, R. S., & Carter, C. G. (2007). High growth efficiency occurs over a wide temperature range for juvenile barramundi Lates calcarifer fed a balanced diet. Aquaculture, 272, 444–450.

    Article  Google Scholar 

  • Kayhan, F. E., & Duman, B. S. (2010). Heat shock protein genes in fish. Turkish Journal of Fisheries and Aquatic Sciences, 10, 287–293.

    Article  Google Scholar 

  • Ke, L, Meijering, R.A., Hoogstra-Berends, F, Mackovicova, K., Vos, M.J., Van Gelder, I.C., Henning, R.H., Kampinga, H.H., & Brundel, B.J. (2011). HSPB1, HSPB6, HSPB7 and HSPB8 protect against RhoA GTP aseinduced remodeling in tachypaced atrial myocytes. PLoS One, 6, e20395.

    Google Scholar 

  • Keller, J. M., Escara-Wilke, F., & Keller, E. T. (2008). Heat stress induced heat shock protein 70 expression is dependent on ERK activation in zebrafish (Danio rerio) cells. Comparative Biochemistry and Physiology. A, Comparative Physiology, 150, 307–314.

    Article  CAS  Google Scholar 

  • Kelly, P.D., Chu, F., Woods, I.G., Ngo-Hazelett, P., Cardozo, T., Huang, H. et al. (2000). Genetic linkage mapping of zebrafish genes and ESTs. Cold Spring Harbor Laboratory Press. ISSN 1088-9051/0.

    Google Scholar 

  • Kim, J. H., & Kang, J. C. (2015). The arsenic accumulation and its effect on oxidativestress responses in juvenile rockfish, Sebastes schlegelii, exposed to water borne arsenic (As3+). Environmental Toxicology and Pharmacology, 39, 668–676.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. H., & Kang, J. C. (2016). The immune responses and expression of metallothionein (MT) gene and heat shock protein 70 (HSP70) in juvenile rockfish, Sebates schlegelii, exposed to water born arsenic (As3+). Environmental Toxicology Phormocol, 47, 136–141.

    Article  CAS  Google Scholar 

  • Kobayashi, H., Iwamatsu, T., Shibata, Y., Ishihara, M., & Kobayashi, Y. (2011). Effects of co-administration of estrogen and androgen on induction of sex reversal in the medaka Oryzias latipes. Zoological Science, 28(5), 355–359.

    Article  CAS  PubMed  Google Scholar 

  • Kohno, S., Katsu, Y., Urushitani, H., Ohta, Y., Iguchi, T., & Guillette, L. J., Jr. (2010). Potential contributions of heat shock proteins to temperature-dependent sex determination in the American alligator. Sexual Development, 4(1–2), 73–87.

    Article  CAS  PubMed  Google Scholar 

  • Lanneau, D., Brunet, M., Frisan, E., Solary, E., Fontenay, M., & Garrido, C. (2008). Heat shock proteins: Essential proteins for apoptosis regulation. Journal of Cellular and Molecular Medicine, 12(3), 743–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauritano, C., Orefice, I., Procaccini, G., Romano, G., & Ianora, A. (2015). Key genes as stress indicators in the ubiquitous diatom Skeletonema marinoi. BMC Genomics, 16, 411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lauritano, C., Romano, G., Roncalli, V., Amoresano, A., Fontanarosa, C., Bastianini, M., et al. (2016). New oxylipins produced at the end of a diatom bloom and their effects on copepod reproductive success and gene expression levels. Harmful Algae, 55, 221–229.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. Y., Cho, W. J., Do, J. W., Kim, H. J., & Park, J. W. (1996). Monoclonal antibodies raised against Infectious Haematopoietic Necrosis Virus (IHNV) G protein and a cellular 90 kDa protein neutralize IHNV infection in vitro. The Journal of General Virology, 77, 1731–1737.

    Article  CAS  PubMed  Google Scholar 

  • Li, F. J., Luan, W., Zhang, C. S., Zhang, J. Q., Wang, B., Xie, Y. S., et al. (2009). Cloning of cytoplasmic heat shock protein 90 (FcHSP90) from Fenneropenaeus chinensis and its expression response to heat shock and hypoxia. Cell Stress & Chaperones, 14, 161–172.

    Article  CAS  Google Scholar 

  • Li, Z. H., Chen, L., Wu, Y. H., Li, P., Li, Y. F., & Ni, Z. H. (2014). Effects of waterborne cadmium on thyroid hormone levels and related gene expression in Chinese rare minnow larvae. Comparative Biochemistry and Physiology Part C Toxicology and Pharmacology, 161, 53–57.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Zhang, H., Zhang, X., Yang, S., Yan, T., & Song, Z. (2015). Molecular cloning and expression of two heat-shock protein genes (HSC70/HSP70) from Prenant’s schizothoracin (Schizothorax prenanti). Fish Physiology and Biochemistry, 41, 573–585.

    Article  CAS  PubMed  Google Scholar 

  • Liang, F., Zhang, G., Yin, S., Wang, L. (2016). The role of three heat shock protein genes in the immune response to Aeromonas hydrophila challenge in marbled eel, Anguilla marmorata. Royal Society Open Science 3(10), 160375.

    Google Scholar 

  • Lindquist, S., & Craig, E. A. (1988). The heat shock proteins. Annual Review of Genetics, 22, 631–677.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Yang, W. J., Zhu, X. J., Karounarenier, N. K., & Rao, R. K. (2004). Molecular cloning and expression of two HSP70 genes in the prawn, Macrobrachium rosenbergii. Cell Stress and Chaperones, 9, 313–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H., Zheng, F., Sun, X., Hong, X., Dong, S., Wang, B., et al. (2010). Identification of the pathogens associated with skin ulceration and peristome tumescence in cultured sea cucumbers Apostichopus japonicus (Selenka). Journal of Invertebrate Pathology, 105, 236–242.

    Article  PubMed  Google Scholar 

  • Liu, T., Pan, L., Cai, Y., & Miao, J. (2014). Molecular cloning and sequence analysis of heat shock proteins 70 (HSP70) and 90 (HSP90) and their expression analysis when exposed to benzo(a)pyrene in the clam Ruditapes philippinarum. Gene, 555(2), 108–118.

    Article  PubMed  CAS  Google Scholar 

  • Mahmood, K., Jadoon, S., Mahmood, Q., Irshad, M., & Hussain, J. (2014). Synergistic effects of toxic elements on heat shock proteins. BioMed Research International, 2014, 1–17.

    Google Scholar 

  • Manfrin, C., Dreos, R., Battistella, S., Beran, A., Gerdol, M., Varotto, L., et al. (2010). Mediterranean mussel gene expression profile induced by okadaic acid expressure. Environmental Science & Technology, 44, 8276–8283.

    Article  CAS  Google Scholar 

  • Meyer, A. S., Gillespie, J. R., Walther, D., Millet, I. S., Doniach, S., & Frydman, J. (2003). Closing the folding chamber of the eukaryotic chaperon in requires the transition state of ATP hydrolysis. Cell, 113, 369–381.

    Article  CAS  PubMed  Google Scholar 

  • MiCoviC, V., Bulog, A., KuciC, V., Jakovac, H., & StasiC, B. R. (2009). Metallothioneins and heat shock proteins 70 in marine mussels as sensors of environmental pollution in northern Adriatic Sea. Environmental Toxicology and Pharmacology, 28, 439–447.

    Article  CAS  PubMed  Google Scholar 

  • Ming, J., Xie, J., Xu, P., Liu, W., Ge, X., Liu, B., et al. (2010). Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih). Fish & Shellfish Immunology, 28, 407–418.

    Article  CAS  Google Scholar 

  • Mirkes, P. E., Doggett, B., & Cornel, L. (1994). Induction of a heat shock response (HSP72) in rat embryos exposed to selected chemical teratogens. Teratology, 49(2), 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, D. L., Nairn, R. S., Jhonston, D. A., Byrom, M., Kazianis, S., & Walter, R. B. (2004). Decreased level of (6–4) photoproduct excision repair in hybrid fish of genus Xiphophorus. Photochemistry and Photobiology, 79, 447–452.

    Article  CAS  PubMed  Google Scholar 

  • Mock, A., & Peters, G. (1990). Lysozyme activity in rainbow trout, Oncorhynchus mykiss (Walbaum), stressed by handling, transport and water pollution. Journal of Fish Biology, 37, 873–885.

    Article  Google Scholar 

  • Moczko, M., Schönfisch, B., Voos, W., Pfanner, N., & Rassow, J. (1995). The mitochondrial ClpB homolog HSP78 cooperates with matrix HSP70 in maintenance of mitochondrial function. Journal of Molecular Biology, 254, 538–543.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto, R. I. (1993). Cells in stress: Transcriptional activation of heat shock genes. Science, 259(5100), 1409–1410.

    Article  CAS  PubMed  Google Scholar 

  • Mork, L., Czerwinski, M., & Capel, B. (2014). Predetermination of sexual fate in a turtle with temperature-dependent sex determination. Developmental Biology, 386(1), 264–271.

    Article  CAS  PubMed  Google Scholar 

  • Mounier, N., & Arrigo, A. P. (2002). Actin cytoskelaton and small heat shock proteins: How do they interact? Cell Stress & Chaperones, 7, 167–176.

    Article  CAS  Google Scholar 

  • Moya, A., Huisman, L., Foret, S., Gattuso, J. P., Hayward, D. C., Ball, E. E., et al. (2015). Rapid acclimation of juvenile corals to CO-mediated acidification by up regulation of heat shock protein and Bcl-2 genes. Molecular Ecology, 24, 438–452.

    Article  CAS  PubMed  Google Scholar 

  • Mu, W., Wen, H., Li, J., & He, F. (2013). Cloning and expression analysis of a HSP70 gene from Korean rockfish (Sebastes schlegeli). Fish & Shellfish Immunology, 35, 1111–1121.

    Article  CAS  Google Scholar 

  • Multhoff, G. (2007). Heat shock protein 70 (HSP70): Membrane location, export and immunological relevance. Methods, 43, 229–237.

    Article  CAS  PubMed  Google Scholar 

  • Mutwakil, M. H., Reader, J. P., Holdich, D. M., Smithurst, P. R., Candido, E. P. M., Jones, D., et al. (1997). Use of stress-inducible transgenic nematodes as biomarkers of heavy-metal pollution in water samples from english river system. Archives of Environmental Contamination and Toxicology, 32(2), 146–153.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, H. (2005). Thioredoxin and its related molecules: Update. Antioxidant and Redox Signalling, 7, 823–828.

    Article  CAS  Google Scholar 

  • Nakamura, H., Nakamura, K., & Yodoi, J. (1997). Redox regulation of cellular activation. Annual Review of Immunology, 15, 351–369.

    Article  CAS  PubMed  Google Scholar 

  • Nazir, A., Mukhopadhyay, I., Saxena, D. K., & Chowdhuri, D. K. (2006). HSP70 expression in Drosophila melanogaster: Toxicological perspective. In A. S. Sreedhar & U. K. Srinivas (Eds.), Stress response: A molecular biology approach (pp. 207–226). Trivandrum: Research Singpost Press.

    Google Scholar 

  • Neckers, L. (2007). Heat shock protein 90: The cancer chaperone. Journal of Biosciences, 32, 517–530.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, G. E., Crawley, N., Lunde, I. G., & Munday, P. L. (2009). Elevated temperature reduces the respiratory scope of coral reef fishes. Global Change Biology, 15, 1405–1412.

    Article  Google Scholar 

  • Noonan, F. P., Halliday, W. J., Morton, H., & Clunie, G. J. (1979). Early pregnancy factor is immunosuppressive. Nature, 278, 649–651.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, K., Seta, R., Shimizu, T., Shinkai, S., Calderwood, S. K., Nakazato, K., & Takahashi, K. (2011). Plasma adenosine triphosphate and heat shock protein 72 concentrations after aerobic and eccentric exercise. Exercise Immunology Review, 17, 136–149.

    PubMed  Google Scholar 

  • Olla, B. L., Studholme, A. L., Bejda, A. J., Samet, C., & Martin, A. D. (1978). Effect of temperature on activity and social behavior of the adult tautog Tautoga onitis under laboratory conditions. Marine Biology, 45, 369–378.

    Article  Google Scholar 

  • Orosz, A., Wisniewski, J., & Wu, C. (1996). Regulation of drosophila heat shock factor trimerization: Global sequence requirements and independence of nuclear localization. Molecular Cellular Biology, 16(12), 7018–7030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padmini, E., & Usha Rani, M. (2008). Impact of seasonal variation on HSP70 expression quantitated in stressed fish hepatocytes. Comparative Biochemistry and Physiology Part B, 151, 278–285.

    Article  CAS  Google Scholar 

  • Padmini, E., & Usha Rani, M. (2009). Seasonal influence on heat shock protein 90α and heat shock factor 1 expression during oxidative stress in fish hepatocytes from polluted estuary. Journal of Experimental Marine Biology and Ecology, 372, 1–8.

    Article  CAS  Google Scholar 

  • Padmini, E., & Rani, M. U. (2010). Thioredoxin and HSP90 alpha modulate ASK1-JNK1/2 signaling in stressed hepatocytes of Mugil cephalus. Comparative Biochemistry and Physiology C Toxicology and Pharmacology, 151(2), 187–193.

    Article  PubMed  CAS  Google Scholar 

  • Padmini, E., & Vijaya Geetha, B. (2012). Mitochondrial HSP70 cognate-mediated differential expression of JNK1/2 in the pollution stressed grey mullets, Mugil cephalus. Fish Physiology and Biochemistry, 38(5), 1257–1271.

    Article  CAS  PubMed  Google Scholar 

  • Padmini, E., Lavanya, S., & Uthra, V. (2009). Preeclamptic placental stress and over expression ofmitochondrial HSP70. Clinical Chemistry and Laboratory Medicine, 47(9), 1073–1080.

    Google Scholar 

  • Parcellier, A., Gurbuxani, S., Schmitt, E., Solary, E., & Garrido, C. (2003). Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochemical and Biophysical Research Communications, 304(3), 505–512.

    Article  CAS  PubMed  Google Scholar 

  • Park, H., Ahn, I. Y., & Lee, H. E. (2007). Expression of heat shock protein 70 in the thermally stressed Antarctic clam Laternula elliptica. Cell Stress & Chaperones, 12, 275–282.

    Article  CAS  Google Scholar 

  • Parsell, D. A., & Lindquist, S. (1993). The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annual Review of Genetics, 27, 437–496.

    Article  CAS  PubMed  Google Scholar 

  • Parsell, D. A., Taulien, J., & Lindquist, S. (1993). The role of heat-shock proteins in thermotolerance. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 339, 279–285.

    Article  CAS  PubMed  Google Scholar 

  • Pearl, L. H., & Prodromou, C. (2000). Structure and in vivo function of HSP90. Current Opinion in Structural Biology, 10, 46–51.

    Article  CAS  PubMed  Google Scholar 

  • Peck, L. S. (2011). Organisms and responses to environmental change. Marine Genomics, 4, 237–243.

    Article  PubMed  Google Scholar 

  • Pelham, H. R. (1982). A regulatory upstream promoter element in the Drosophila HSP 70 heat-shock gene. Cell, 30, 517–528.

    Article  CAS  PubMed  Google Scholar 

  • Picard, D. (2002). Heat shock protein 90, a chaperone for folding and regulation. Cellular and Molecular Life Sciences, 59, 1640–1648.

    Article  CAS  PubMed  Google Scholar 

  • Pinto, E., Sigaud-Kutner, T. C. S., Leitao, M. A. S., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39, 1008–1018.

    Article  CAS  Google Scholar 

  • Pirkkala, L., Nykanen, P., & Sistonen, L. (2001). Roles of the heat shock transcprition factors in regulation of the heat shock response and beyond. Federation of American Societies for Experimental Biology, 15, 1118–1131.

    Article  CAS  Google Scholar 

  • Ponomarenko, M., Stepanenko, I., & Kolchanov, N. (2013). Heat shock proteins in Brenner’s encyclopedia of genetics (2nd ed.pp. 402–405).

    Book  Google Scholar 

  • Portner, H. O., & Farrell, A. P. (2008). Physiology and climate change. Science, 322, 690–692.

    Article  PubMed  Google Scholar 

  • Portner, H. O., & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315, 95–97.

    Article  PubMed  CAS  Google Scholar 

  • Pretto, A., Loro, V. L., Morsch, V. M., Moraes, B. S., Menezes, C., & Clasen, B. (2010). Acetylcholinesterase activity, lipid peroxidation, and bioaccumulation in silver catfish (Rhamdia quelen) exposed to cadmium. Archives of Environmental Contamination and Toxicology, 58, 1008–1014.

    Article  CAS  PubMed  Google Scholar 

  • Qi, J., Liu, X., Liu, J., Yu, H., Wang, W., Wang, Z., & Zhang, Q. (2014). Molecular characterization of heat shock protein 70 (HSP70) promoter in Japanese flounder (Paralichthys olivaceus), and the association of PoHSP70 SNPs with heat-resistant trait. Fish & Shellfish Immunology, 39, 503–511.

    Article  CAS  Google Scholar 

  • Quinn, K. A., & Morton, H. (1992). Effect of monoclonal antibodies to Early Pregnancy Factor (EPF) on the in vivo growth of transplantable murine tumours. Cancer Immunology, Immunotherapy, 34, 265–271.

    Article  CAS  PubMed  Google Scholar 

  • Raina, S., & Missiakas, D. (1997). Making and breaking disulfide bonds. Annual Review of Microbiology, 51, 179–202.

    Article  CAS  PubMed  Google Scholar 

  • Rajeshkumar, S., & Munuswamy, N. (2011). Impact of metals on histopathology and expression of HSP 70 in different tissues of milk fish (Chanos chanos) of Kattuppalli Island, South east coast, India. Chemosphere, 83, 415–421.

    Article  CAS  PubMed  Google Scholar 

  • Rajeshkumar, S., Mini, J., & Munuswamy, N. (2013). Effects of heavy metals on antioxidants and expression of HSP70 in different tissues of milk fish (Chanos chanos) of Kaattuppalli Island, Chennai, India. Ecotoxicology and Environmental Safety, 98, 8–18.

    Article  CAS  PubMed  Google Scholar 

  • Ramaglia, V., Harapa, G. M., White, N., & Buck, L. T. (2004). Bacterial infection and tissue-specific Hsp72, 73 and −90 expression in western painted turtles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 138(2), 139–148.

    Google Scholar 

  • Reports, B., & Kumar, T. C. A. (1962). Shock and DNP in Drosophila, 55, 571–573.

    Google Scholar 

  • Rietsch, A., & Beckwith, J. (1998). The genetics of disulfide bond metabolism. Annual Review of Genetics, 32, 163–184.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, R. J., Agius, C., Saliba, C., Bossier, P., & Sung, Y. Y. (2010). Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: A review. Journal of Fish Diseases, 33, 789–801.

    Article  CAS  PubMed  Google Scholar 

  • Rodius, F., Doyen, P., & Vasseur, P. (2005). cDNA cloning and expression pattern of pi-class glutathione S-transferase in the freshwater bivalves Unio tumidus and Corbicula fluminea. Comparative Biochemistry and Physiology Part C, Toxicology & Pharmacology, 140, 300–308.

    Article  CAS  Google Scholar 

  • Romani, W. A., & Russ, D. W. (2013). Acute effects of sex-specific sex hormones on heat shock proteins in fast muscle of male and female rats. European Journal of Applied Physiology, 113(10), 2503–2510.

    Article  CAS  PubMed  Google Scholar 

  • Rosario, M. O., Perkins, S. L., O’Brien, D. A., Allen, R. L., & Eddy, E. M. (1992). Identification of the gene for the developmentally expressed 70 kDa heat-shock protein (P70) of mouse spermatogenic cells. Developmental Biology, 150, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld, G. E., Mercer, E. J., Mason, C. E., & Evans, T. (2013). Small heat shock proteins Hspb7 and Hspb12 regulate early steps of cardiac morphogenesis. Developmental Biology, 381, 389–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rungrassamee, W., Leelatanawit, R., Jiravanichpaisal, P., Klinbunga, S., & Karoonuthaisiri, N. (2010). Expression and distribution of three heat shock protein genes under heat shock stress and under exposure to Vibrio harveyi in Penaeus monodon. Developmental and Comparative Immunology, 34, 1082–1089.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, J. A., & Hightower, L. E. (1996). Stress proteins as molecular biomarkers for environmental toxicology. In U. Feige, I. Yahara, R. I. Morimoto, & B. S. Polla (Eds.), Stess-Indrucible cellular responses. EXS (Vol. 77). Basel: Birkhäuser.

    Google Scholar 

  • Saluja, A. & Dudeja, V. (2008). Heat shock proteins in pancreatic diseases. Journal of Gastroenterology and Hepatology, 23 (1), 42-45.

    Google Scholar 

  • Samali, A., & Orrenius, S. (1998). Heat shock proteins: Regulations of stress response and apoptosis. Cell & Stress Chaperones, 3, 228–236.

    Article  CAS  Google Scholar 

  • Sampaio, F. G., Boijink, C. L., Oba, E. T., Santos, L. R. B., Kalinin, A. L., & Rantin, F. T. (2008). Antioxidant defenses and biochemical changes in pacu (Piaractus mesopotamicus) in response to single and combined copper and hypoxia exposure. Comparative Biochemistry and Physiology. Part C, 147, 43–51.

    Google Scholar 

  • Sanders, B. M. (1993). Stress proteins in aquatic organisms: An environmental perspective. Critical Reviews in Toxicology, 23, 49–75.

    Article  CAS  PubMed  Google Scholar 

  • Sandrini, J. Z., Trinade, G. S., Nery, L. E. M., & Marins, L. F. (2009). Time-course expression of DNA repair-related genes in hepatocytes of zebrafish after UV-B exposure. Photochemistry and Photobiology, 85, 220–226.

    Article  CAS  PubMed  Google Scholar 

  • Schlenk, D., Wolford, L., Chelius, M., Steevens, J., & Chan, K. M. (1997). Effect of arsenite, arsenate, and the herbicide monosodium methyl arsenate (MSMA) on hepatic metallothionein expression and lipid peroxidation in channel catfish. Comparative Biochemistry and Physiolo Part C Pharmacology, Toxicol & Endocrinology, 118, 177–183.

    Article  CAS  Google Scholar 

  • Schlesinger, M. J. (1990). Heat shock proteins. The Journal of Biological Chemistry, 265(21), 12111–12114.

    CAS  PubMed  Google Scholar 

  • Seveso, D., Montano, S., Strona, G., Orlandi, I., Galli, P., & Vai, M. (2014). The susceptibility of corals to thermal stress by analyzing HSP60 expression. Marine Environmental Research, 99, 69–75.

    Article  CAS  PubMed  Google Scholar 

  • Sherman, M. Y., & Goldberg, A. L. (2001). Cellular defenses against unfolded proteins: A cell biologist thinks about neurodegenerative diseases. Neuron, 29, 15–32.

    Article  CAS  PubMed  Google Scholar 

  • Siddique, H. R., Gupta, S. C., Mitra, K., Murthy, R. C., Saxena, D. K., & Chowdhuri, D. K. (2007). Induction of biochemical stress markers and apoptosis in transgenic Drosophila melanogaster against complex chemical mixtures: Role of reactive oxygen species. Chemico-Biological Interactions, 169(3), 171–188.

    Article  CAS  PubMed  Google Scholar 

  • Siddique, H. R., Mitra, K., Bajpai, V. K., Ravi Ram, K., Saxena, D. K., & Chowdhuri, D. K. (2009). Hazardous effect of tannery solid waste leachates on development and reproduction in Drosophila Melanogaster: 70 kDa heat shock protein as a marker of cellular damage. Ecotoxicology and Environmental Safety, 72(6), 1652–1662.

    Article  CAS  PubMed  Google Scholar 

  • Sikora, A., & Grzesiuk, E. (2007). Heat shock response in gastrointestinal tract. Journal of Physiology and Pharmacology, 58(3), 43–62.

    PubMed  Google Scholar 

  • Silver, J. T., & Noble, E. G. (2012). Regulation of survival gene HSP70. Cell Stress & Chaperones, 17, 1–9.

    Article  CAS  Google Scholar 

  • Simone, F., Adrienne, M. G., Osamu, H., & Afshin, S. (2010). Cellular stress responses: Cell survival and cell death. International Journal of Cell Biology, 2010, 1–23.

    Google Scholar 

  • Singh, A. K. (2013). Introduction ofmodern endocrine techniques for the production of monosex population of fishes. General and Comparative Endocrinology, 181, 146–155.

    Article  CAS  PubMed  Google Scholar 

  • Singh, M. P., Reddy, M. M., Mathur, N., Saxena, D. K., & Chowdhuri, D. K. (2009). Induction of HSP70, HSP60, HSP83 and HSP26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila Melanogaster: Role of ROS generation. Toxicology and Applied Pharmacology, 235(2), 226–243.

    Article  CAS  PubMed  Google Scholar 

  • Singh, M. K., Sharma, J. G., & Chakrabarti, R. (2013). Effect of UV-B radiation on the defence system of Labeo rohita (Actinopterygii: Cypriniformes: Cyprinidae) larvae and its modulation by seed of Devil’s horsewhip Achyranthes aspera. Acta Ichthyologica et Piscatoria, 43, 119–126.

    Article  Google Scholar 

  • Somero, G. (1995). Proteins and temperature. Annual Review of Physiology, 57, 43–68.

    Article  CAS  PubMed  Google Scholar 

  • Sorensen, J. G., & Kristensen, T. N. (2003). The evolutionary and ecological role of heat shock proteins. Ecology Letters, 6, 1025–1037.

    Article  Google Scholar 

  • Soti, C. S., Nagy, E., Giricz, Z., Vigh, L., Csermely, P., & Ferdinandy, P. (2005). Heat shock proteins as emerging therapeutic targets. British Journal of Pharmacology, 146, 769–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spann, N., Aldridge, D. C., Griffin, J. L., & Jones, O. A. H. (2011). Size-dependent effects of low level cadmium and zinc exposure on the metabolome of the Asian clam, Corbicula fluminea. Aquatic Toxicology, 105, 589–599.

    Article  CAS  PubMed  Google Scholar 

  • Sreedhar, A. S., Kalmar, E., Csermely, P., & Shen, Y. F. (2004). HSP90 isoforms: Functions, expression and clinical importance. FEBS Letters, 562, 11–15.

    Article  PubMed  CAS  Google Scholar 

  • Stringham, E. G., & Candido, E. P. M. (1994). Transgenic HSP16-lacZ strains of the soil nematode Caenorhabditis Elegans as biological monitors of environmental stress. Environmental Toxicology and Chemistry, 13(8), 1211–1220.

    Article  CAS  Google Scholar 

  • Stringham, E. G., Dixon, D. K., Jones, D., & Candido, E. P. M. (1992). Temporal and spatial expression patterns of small heat shock (HSP16) genes in transgenic Caenorhabditis Elegans. Molecular Biology of the Cell, 3(2), 221–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sucre, E., Vidussi, F., Mostajir, B., Charmantier, G., & Lorin-Nebel, C. (2012). Impact of ultraviolet-B radiation on planktonic fish larvae: Alteration of the osmoregulatory function. Aquatic Toxicology, 109, 194–201.

    Article  CAS  PubMed  Google Scholar 

  • Sung, Y. Y., & Mac Rae, T. H. (2011). Heat shock proteins and disease control in aquatic organisms. Journal of Aquaculture Research and Development. S2:006.

    Google Scholar 

  • Tavaria, M., Gabriele, T., Kola, I., & Anderson, R. L. (1996). A hitchhiker’s guide to the human HSP 70 family. Cell Stress Chaperon, 1, 23–28.

    Article  CAS  Google Scholar 

  • Tissieres, A., Mitchell, H. K., & Tracy, V. M. (1974). Protein synthesis in salivary glands of Drosophila melanogaster. Relation to chromosome puffs. Journal of Molecular Biology, 84, 389–398.

    Article  CAS  PubMed  Google Scholar 

  • Tomanek, L. (2010). Variation in the heat shock response and its implication for predicting the effect of global climate change on species biogeographical distribution ranges and metabolic costs. The Journal of Experimental Biology, 213, 971–979.

    Article  CAS  PubMed  Google Scholar 

  • Triantafilou, K., Triantafilou, M., & Dedrick, R. L. (2001). A CD14-independent LPS receptor cluster. Nature Immunology, 2, 338–345.

    Article  CAS  PubMed  Google Scholar 

  • Ulloa, V. S., Tajes, J. F., Manfrin, C., Gerdol, M., Venier, P., & Lopez, J. M. E. (2013). Bivalve omics: State of the art and potential applications for the biomonitoring of harmful marine compounds. Marine Drugs, 11, 4370–4389.

    Article  CAS  Google Scholar 

  • Val, A. L., Castro-Perez, C. A., & Almeida-Val, V. M. F. (2004). UV an environmental challenge for fish of Amazon. In S. Dee (Ed.), VI International congress on biology of fishes, Manaus, advance in fish biology (pp. 1–5). Vancouver: American Fisheries Society- Physiology Section 1.

    Google Scholar 

  • Vasconcelos, V., Martins, J. C., & Leao, P. N. (2009). Differential protein expression in Corbicula fluminea upon exposure to a Microcystis aeruginosa toxic strain. Toxicon, 53, 409–416.

    Article  PubMed  CAS  Google Scholar 

  • Vega, E., Hall, M., Degnan, B., & Wilson, K. (2006). Short-term hyperthermic treatment of Penaeus monodon increases expression of heat shock protein 70 (HSP70) and reduces replication of Gill Associated Virus (GAV). Aquaculture, 253, 82–90.

    Article  Google Scholar 

  • Vehniainen, E. R., Vahakangas, K., & Oikari, A. O. J. (2012). UV-B exposure causes DNA damages and changes in protein expression in Northern pike (Esox lucius) post hatched embryo. Photochemistry and Photobiology, 88, 363–370.

    Article  CAS  PubMed  Google Scholar 

  • Vijayan, M. M., Pereira, C., Kruzynski, G., & Iwama, G. K. (1998). Sublethal concentrations of contaminant induce the expression of hepatic HSP70 in two salmonids. Aquatic Toxicology, 40, 101–108.

    Article  CAS  Google Scholar 

  • Vogel, M., Bukau, B., & Mayer, M. P. (2006). Allosteric regulation of HSP70 chaperones by a proline switch. Molecular Cell, 21, 359–367.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T., & Overgaard, J. (2007). The heart break of adapting to global warming. Science, 315, 49–50.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Wei, Y., Li, X., Cao, H., Xu, M., & Dai, J. (2007). The identification of heat shock protein genes in goldfish (Carassius auratus) and their expression in a complex environment in Gaobeidian Lake, Beijing, China. Comparative Biochemistry and Physiology - Part C, 145, 350–362.

    PubMed  Google Scholar 

  • Wei, T., Gao, Y., Wang, R., & Xu, T. (2013). A heat shock protein 90 beta isoform involved in immune response to bacteria challenge and heat shock from Miichthys miiuy. Fish & Shellfish Immunology, 35, 429–437.

    Article  CAS  Google Scholar 

  • Whitley, D. M. D., Steven, P., Goldberg, M. D., William, D., & Jordan, M. D. (1999). Heat shock proteins: A review of the molecular chaperones. Journal of Vascular Surgery, 29, 748–751.

    Article  CAS  PubMed  Google Scholar 

  • Williams, J. H., Farag, A. M., Stansbury, M. A., Young, P. A., Bergman, H. L., & Peterson, N. S. (1996). Accumulation of HSP70 in juvenile and adult rainbow trout gill exposed to metal contaminated water and/or diet. Environmental Toxicology and Chemistry, 15, 1324–1328.

    Article  CAS  Google Scholar 

  • Woo, S., Yum, S., Park, H. S., Lee, T. K., & Ryu, J. C. (2009). Effects of heavy metals on antioxidants and stress responsive gene expression in Javanese medaka (Oryzias javanicus). Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 149, 289–299.

    Google Scholar 

  • Wu, C. (1995). Heat shock transcription factors: Structure and regulation. Annual Review of Cell and Developmental Biology, 11, 441–469.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., Tan, J., Cai, M., & Liu, X. (2014). Molecular cloning, characterization, and expression analysis of a Heat Shock Protein (HSP) 70 gene from Paphia undulata. Gene, 543, 275–285.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., & Lindquist, S. (1993). Heat-shock protein HSP 90 governs the activity of pp 60v-src kinase. Proceedings of the National Academy of Sciences of the United States of America, 90, 7074–7078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita, M., Yabu, T., & Ojima, N. (2010). Stress protein HSP70 in fish. Aqua Biology Sc Mono, 3, 111–141.

    Google Scholar 

  • Yokoyama, N., Hirata, M., Ohtsuka, K., Nishiyama, Y., Fujii, K., Fujita, M., et al. (2000). Co-expression of human chaperone HSP70 and Hsdj or HSP40 co-factor increases solubility of overexpressed target proteins in insect cells. Biochimica et Biophysica Acta, 1493, 119–124.

    Article  CAS  PubMed  Google Scholar 

  • Young, J. C., Moarefi, I., & Hartl, F. U. (2001). HSP90: A specialized but essential protein-folding tool. The Journal of Cell Biology, 154, 267–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X. Y., Zhang, M. Z., Zheng, C. J., Liu, J., & Hu, H. J. (2009). Identification of two HSP90 genes from the marine crab, Portunus trituberculatus and their specific expression profiles under different environmental conditions. Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 150, 465–473.

    Google Scholar 

  • Zhang, Z., & Zhang, Q. (2012). Molecular cloning, characterization and expression of heat shock protein 70 gene from the oyster Crassostrea hongkongensis responding to thermal stress and exposure of Cu and malachite green. Gene, 497, 172–180.

    Article  CAS  PubMed  Google Scholar 

  • Zuo, D., Subjeck, J., & Wang, X. Y. (2016). Unfolding the role of large heat shock proteins: New insights and therapeutic implications. Frontiers in Immunology, 7, 75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

SSS reviewed and wrote the manuscript. SSS designed and supervised the study. SSG critically read and edited the manuscript. This work was partially funded by Dr. D.S.Kothari post doctoral fellowship to SSS by UGC, GOI (BSR/ME/14-15/0002). SSG acknowledges KRF program of the National Research Foundation of Korea, Ministry of Science and ICT (2016H1D3A1909005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shib Sankar Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sen, S.S., Giri, S.S. (2017). Physiological Role of Heat Shock Proteins, Molecular Function and Stress Removal in Fishes. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Veterinary Medicine and Sciences. Heat Shock Proteins, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-73377-7_8

Download citation

Publish with us

Policies and ethics