Skip to main content

Spatio-Temporal-Network Visualization for Exploring Human Movements and Interactions in Physical and Virtual Spaces

  • Chapter
  • First Online:
Human Dynamics Research in Smart and Connected Communities

Part of the book series: Human Dynamics in Smart Cities ((HDSC))

Abstract

In this research, we propose a conceptual framework for spatiotemporal and social network visualization in a three-dimensional context. Based on this framework, new spatio-temporal-network (STN) quantitative metrics (including STN-impact-extent, STN-impact-center, STN-distance, STN-efficiency, and STN-centrality) are introduced to measure the underlying dynamic interactions among entities. The proposed framework aims to help better understand spatiotemporal patterns of human dynamics and social interactions over both physical and virtual spaces simultaneously, as well as explore how emerging events trigger spatial-temporal-social interactions and information diffusion from a process perspective. As a proof of concept, we demonstrate the proposed framework with a case study using geotagged tweets and associated visualization in the ArcScene software. We hope that this research can stimulate new insights on integrating multidisciplinary knowledge to explore human dynamics in a broader way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrienko, N., & Adrienko, G. (2011). Spatial generalization and aggregation of massive movement data. IEEE Transactions on Visualization and Computer Graphics, 17(2), 205–219.

    Article  Google Scholar 

  • Amini, A., Kung, K., Kang, C., Sobolevsky, S., & Ratti, C. (2014). The impact of social segregation on human mobility in developing and industrialized regions. EPJ Data Science, 3(1), 6.

    Article  Google Scholar 

  • Andris, C. (2016). Integrating social network data into GISystem. International Journal of Geographical Information Science, 30(10), 2009–2031.

    Google Scholar 

  • Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71.

    Article  Google Scholar 

  • Cao, N., Lin, Y. R., Sun, X., Lazer, D., Liu, S., & Qu, H. (2012). Whisper: Tracing the spatiotemporal process of information diffusion in real time. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2649–2658.

    Article  Google Scholar 

  • Crucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of urban streets. Physical Review E, 73(3), 036125.

    Article  Google Scholar 

  • Cui, W., Zhou, H., Qu, H., Wong, P. C., & Li, X. (2008). Geometry-based edge clustering for graph visualization. IEEE Transactions on Visualization and Computer Graphics, 14(6), 1277–1284.

    Article  Google Scholar 

  • Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40, 35–41.

    Google Scholar 

  • Freeman, L. C., Borgatti, S. P., & White, D. R. (1991). Centrality in valued graphs: A measure of betweenness based on network flow. Social Networks, 13(2), 141–154.

    Article  Google Scholar 

  • Gao, S. (2015). Spatio-temporal analytics for exploring human mobility patterns and urban dynamics in the mobile age. Spatial Cognition & Computation, 15(2), 86–114.

    Article  Google Scholar 

  • Gao, S., Liu, Y., Wang, Y., & Ma, X. (2013a). Discovering spatial interaction communities from mobile phone data. Transactions in GIS, 17(3), 463–481.

    Article  Google Scholar 

  • Gao, S., Wang, Y., Gao, Y., & Liu, Y. (2013b). Understanding urban traffic-flow characteristics: a rethinking of betweenness centrality. Environment and Planning B: Planning and Design, 40(1), 135–153.

    Article  Google Scholar 

  • Gao, S., Yan, B., Gong, L., Regalia, B., Ju, Y., & Hu, Y. (2017). Uncovering the digital divide and the physical divide in senegal using mobile phone data. In Advances in geocomputation (pp. 143–151). Cham: Springer.

    Google Scholar 

  • Garcia, B. E., & Wimpy, C. (2016). Does information lead to emulation? Spatial dependence in anti-government violence. Political Science Research and Methods, 4(01), 27–46.

    Article  Google Scholar 

  • Gregory, D., & Urry, J. (1985). Suspended animation: The stasis of diffusion theory. In D. Gregory & J. Urry (Eds.), Social relations and spatial structures (pp. 296–336). New York: St. Martin’s Press.

    Chapter  Google Scholar 

  • Guare, J. (1990). Six degrees of separation: A play. New York: Vintage Books.

    Google Scholar 

  • Guo, D. (2009). Flow mapping and multivariate visualization of large spatial interaction data. IEEE Transactions on Visualization and Computer Graphics, 15, 1041–1048.

    Article  Google Scholar 

  • Hägerstrand, T. (1967). Aspects of the spatial structure of social communication and the diffusion of information. Papers in Regional Science, 16(1), 27–42.

    Article  Google Scholar 

  • He, J., & Chen, C. (2016, September). Spatiotemporal Analytics of Topic Trajectory. In Proceedings of the 9th International Symposium on Visual Information Communication and Interaction (pp. 112–116). ACM.

    Google Scholar 

  • Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519(3), 97–125.

    Article  Google Scholar 

  • Huang, Z., Das, A., Qiu, Y., & Tatem, A. J. (2012). Web-based GIS: The vector-borne disease airline importation risk (VBD-AIR) tool. International Journal of Health Geographics, 11, 1.

    Article  Google Scholar 

  • Hu, Y., Gao, S., Janowicz, K., Yu, B., Li, W., & Prasad, S. (2015). Extracting and understanding urban areas of interest using geotagged photos. Computers, Environment and Urban Systems, 54, 240–254.

    Article  Google Scholar 

  • Kempe, D., Kleinberg, J., & Kumar, A. (2000, May). Connectivity and inference problems for temporal networks. In Proceedings of the thirty-second annual ACM symposium on Theory of computing (pp. 504–513). USA: ACM.

    Google Scholar 

  • Kwan, M. P. (2004). GIS methods in time-geographic research: Geocomputation and geovisualization of human activity patterns. Geografiska Annaler: Series B, Human Geography, 86, 267–280.

    Article  Google Scholar 

  • Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a social network or a news media?. In Proceedings of the 19th international conference on World wide web, (pp. 591–600). ACM, April.

    Google Scholar 

  • Lee, J. Y. & M. P. Kwan (2011). Visualisation of socio‐spatial isolation based on human activity patterns and social networks in space‐time. Tijdschrift voor economische en sociale geografie, 102, 468–485.

    Google Scholar 

  • Liu, Y., Liu, X., Gao, S., Gong, L., Kang, C., Zhi, Y., et al. (2015). Social sensing: A new approach to understanding our socioeconomic environments. Annals of the Association of American Geographers, 105(3), 512–530.

    Article  Google Scholar 

  • Luo, W. (2016). Visual analytics of geo-social interaction patterns for epidemic control. International Journal of Health Geographics, 15, 28.

    Article  Google Scholar 

  • Luo, W., & MacEachren, A. M. (2014). Geo-social visual analytics. Journal of Spatial Information Science, 2014(8), 27–66.

    Google Scholar 

  • Luo, W., MacEachren, A. M., Yin, P., & Hardisty, F. (2011, November). Spatial-social network visualization for exploratory data analysis. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks (pp. 65–68). USA: ACM.

    Google Scholar 

  • Luo, W., Yin, P., Di, Q., Hardisty, F., & MacEachren, A. M. (2014). A geovisual analytic approach to understanding geo-social relationships in the international trade network. PLoS ONE, 9, e88666.

    Article  Google Scholar 

  • Morrill, R., Gaile, G. L., & Thrall, G. I. (1988). Spatial diffusion. SAGE Scientific Geography Series 10. Newbury Park, CA: SAGE Publications, Inc.

    Google Scholar 

  • Newman, M. E. (2005). A measure of betweenness centrality based on random walks. Social networks, 27(1), 39–54.

    Article  Google Scholar 

  • Peuquet, D. J., Robinson, A. C., Stehle, S., Hardisty, F. A., & Luo, W. (2015). A method for discovery and analysis of temporal patterns in complex event data. International Journal of Geographical Information Science, 29(9), 1588–1611.

    Article  Google Scholar 

  • Plane, D. A., & Rogerson, P. A. (2015). On tracking and disaggregating center points of population. Annals of the Association of American Geographers, 105(5), 968–986.

    Article  Google Scholar 

  • Shahaf, D., Guestrin, C., & Horvitz, E. (2012, April). Trains of thought: Generating information maps. In Proceedings of the 21st international conference on World Wide Web (pp. 899–908). USA: ACM.

    Google Scholar 

  • Shaw, S. L., Tsou, M. H., & Ye, X. (2016). Editorial: Human dynamics in the mobile and big data era. International Journal of Geographical Information Science, 30(9), 1687–1693.

    Article  Google Scholar 

  • Shaw, S. L., & Yu, H. (2009). A GIS-based time-geographic approach of studying individual activities and interactions in a hybrid physical–virtual space. Journal of Transport Geography, 17(2), 141–149.

    Article  Google Scholar 

  • Shi, L., Chi, G., Liu, X., & Liu, Y. (2015). Human mobility patterns in different communities: a mobile phone data-based social network approach. Annals of GIS, 21(1), 15–26.

    Article  Google Scholar 

  • Steiger, E, Westerholt, R & Zipf, A. (2016). Research on social media feeds—A GIScience perspective. In: Capineri, C, Haklay, M, Huang, H, Antoniou, V, Kettunen, J, Ostermann, F and Purves, R. (eds.) European handbook of crowd sourced geographic information (pp. 237–254). London: Ubiquity Press. http://dx.doi.org/10.5334/bax.r. License: CC-BY 4.0.

  • Sui, D., & Goodchild, M. (2011). The convergence of GIS and social media: Challenges for GIScience. International Journal of Geographical Information Science, 25(11), 1737–1748.

    Article  Google Scholar 

  • Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234–240.

    Article  Google Scholar 

  • Tsou, M. H., & Leitner, M. (2013). Editorial: Visualization of social media: Seeing a mirage or a message? In special content issue: “Mapping cyberspace and social media”. Cartography and Geographic Information Science., 40(2), 55–60.

    Article  Google Scholar 

  • Tsou, M. H., Kim, I. H., Wandersee, S., Lusher, D., An, L., Spitzberg, B., Gupta, D., Gawron, J. M., Smith, J., Yang, J. A., & Han, S. (2013). Mapping Ideas from cyberspace to real space: Visualizing the spatial context of keywords from web page search results. International Journal of Digital Earth, 7(4), 316–335.

    Google Scholar 

  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications (Vol. 8). Cambridge: Cambridge university press.

    Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. nature, 393(6684), 440–442.

    Google Scholar 

  • Ye, X., & He, C. (2016). The new data landscape for regional and urban analysis. GeoJournal. https://doi.org/10.1007/s10708-016-9737-8.

    Google Scholar 

  • Ye, X., Huang, Q., & Li, W. (2016a). Integrating big social data, computing, and modeling for spatial social science, cartography and geographic information science. Science, 43(5), 377–378.

    Google Scholar 

  • Ye, X., & Lee, J. (2016). Integrating geographic activity space and social network space to promote healthy lifestyles. ACMSIGSPATIAL Health GIS, Newsletter, 8(1), 24–33.

    Google Scholar 

  • Ye, X., Li, S., Yang, X., & Qin, C. (2016b). Use of social media for detection and analysis of infectious disease in China. ISPRS International Journal of Geo-Information. https://doi.org/10.3390/ijgi5090156.

    Google Scholar 

  • Yin, L., & Shaw, S. L. (2015). Exploring space–time paths in physical and social closeness spaces: a space–time GIS approach. International Journal of Geographical Information Science, 29(5), 742–761.

    Article  Google Scholar 

  • Yu, H., & Shaw, S. L. (2008). Exploring potential human activities in physical and virtual spaces: A spatio-temporal GIS approach. International Journal of Geographical Information Science, 22(4), 409–430.

    Article  Google Scholar 

  • Zhu, X., & Guo, D. (2014). Mapping large spatial flow data with hierarchical clustering. Transactions in GIS, 18(3), 421–435.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, S., Chen, H., Luo, W., Hu, Y., Ye, X. (2018). Spatio-Temporal-Network Visualization for Exploring Human Movements and Interactions in Physical and Virtual Spaces. In: Shaw, SL., Sui, D. (eds) Human Dynamics Research in Smart and Connected Communities. Human Dynamics in Smart Cities. Springer, Cham. https://doi.org/10.1007/978-3-319-73247-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73247-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73246-6

  • Online ISBN: 978-3-319-73247-3

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics