Skip to main content

Stress Measures

  • Chapter
  • First Online:
Hyperelasticity Primer
  • 1037 Accesses

Abstract

Within the framework of hyperelasticity, there are as many different stress measures as there are strain measures. The second Piola-Kirchhoff stress tensor, a Lagrangian formulation, is the most significant of the stress measures. The formulation and steps for computing it are presented in terms of the Mooney-Rivlin strain-energy function model. The Cauchy stress tensor, a Eulerian formulation, is obtained directly from the second Piola-Kirchhoff stress tensor. The first Piola-Kirchhoff stress tensor, a Eulerian-Lagrangian two-point tensor, is also obtained directly from the second Piola-Kirchhoff stress tensor. The transpose of the first Piola-Kirchhoff stress tensor is the so-called nominal stress tensor. Both the first Piola-Kirchhoff stress tensor and the nominal stress tensor are widely used in the field of hyperelasticity. The Kirchhoff stress tensor (weighted Cauchy stress tensor) is related to the Cauchy stress tensor through a multiplication by the Jacobian (the determinant of the deformation gradient). The Biot stress, a Lagrangian-based stress tensor, is also an important stress measure. Only somewhat recently has it been recognized that the Biot stress tensor is helpful in the understanding of certain fundamental problems in elasticity theory. Four detailed numerical examples are presented, two of which employ a uniaxial elongation model in comparing/contrasting the solutions of incompressible and nearly incompressible material formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi M, Barakat MS, Vahidkhah K, Azadani AN (2016) Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis. J Mech Behav Biomed Mater 62:33–44

    Article  Google Scholar 

  • Aboudi J (2000) Micromechanical modeling of finite viscoelastic multiphase composites. Z Angew Math Phys 51:114–134

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmadian MT, Nikooyan AA (2006) Modeling and prediction of soft tissue directional stiffness using in-vitro force-displacement data. Int J Sci Res 16:385–389

    Google Scholar 

  • Akhtar R, Sherratt MJ, Cruickshank JK, Derby B (2011) Characterizing the elastic properties of tissues. Mater Today 14(3):96–105

    Article  Google Scholar 

  • Almansi E (1911) Sulle deformazioni finite dei solidi elastici isotropi, I and II. Rend Accad Lincei 20(1):705–744, 20(2):289–296

    MATH  Google Scholar 

  • Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412

    Article  MATH  Google Scholar 

  • Beatty MF (1987) Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl Mech Rev 40:1699–1734

    Article  Google Scholar 

  • Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  • Biot MA (1939) Nonlinear theory of elasticity and the linearized case for a body under initial stress. Philos Mag 27(7):468–489

    Article  MATH  Google Scholar 

  • Biot MA (1965) Mechanics of incremental deformations. Wiley, New York

    Google Scholar 

  • Blatz PJ, Ko WL (1962) Application of finite elastic theory to the deformation of rubbery materials. Trans Soc Rheol 6:223–251

    Article  Google Scholar 

  • Bonet J (2001) Large strain viscoelastic constitutive models. Int J Solids Struct 38:2953–2968

    Article  MATH  Google Scholar 

  • Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Bower AF (2010) Applied mechanics of solids. CRC, Boca Raton

    Google Scholar 

  • Chung TJ (1988) Continuum mechanics. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Chuong CJ, Fung YC (1986) On residual stresses in arteries. J Biomech Eng 108:189–192

    Article  Google Scholar 

  • Dill EH (2007) Continnum mechanics: elasticity, plasticity, viscoelasticity. CRC, Boca Raton

    Google Scholar 

  • Drozdov AD (1996) Finite elasticity and viscoelasticity—a course in the nonlinear mechanics of solids. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Fung YC (1973) Biorheology of soft tissues. Biorheology 10:139–155

    Article  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York

    Google Scholar 

  • Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol 237:620–631

    Google Scholar 

  • Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35

    Article  Google Scholar 

  • Gefen A, Dilmoney B (2007) Mechanics of the normal woman’s breast. Technol Health Care 15(4):259–271

    Google Scholar 

  • Gent AN (1996) A new constitutive relation for rubber. Rubber Chem Technol 69:59–61

    Article  Google Scholar 

  • Gokhale NH, Barbone PE, Oberai AA (2008) Solution of the nonlinear elasticity imaging inverse problem: the compressible case. Inverse Problems 24(4):2008. IOP Publishing Ltd, 045010

    Article  MathSciNet  MATH  Google Scholar 

  • Gould PL (1983) Introduction to linear elasticity. Springer, New York

    Book  MATH  Google Scholar 

  • Gurtin ME (1981) Topics in finite elasticity. CBMS-NSF Regional Conference series in Applied Mathematics, SIAM, Philadelphia, p 35

    Google Scholar 

  • Hackett RM, Bennett JG (2000) An implicit finite element material model for energetic particulate composite materials. Int J Numer Methods Eng 49:1191–1209

    Article  MATH  Google Scholar 

  • Hill R (1968) On constitutive inequalities for simple materials. J Mech Phys Solids 16:229–242

    Article  MATH  Google Scholar 

  • Hill R (1970) Constitutive inequalities for isotropic elastic solids under finite strain. Proc R Soc Lond A314:457–472

    Article  MATH  Google Scholar 

  • Hill R (1978) Aspects of invariance in solid mechanics. Adv Appl Mech 18:1–75

    MathSciNet  MATH  Google Scholar 

  • Hjelmstad KD (2005) Fundamentals of structural mechanics, 2nd edn. Springer, New York

    Google Scholar 

  • Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48. https://doi.org/10.1023/A:1010835316564

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng 190:4379–4403. https://doi.org/10.1016/S0045-7825(00)00323-6

    Article  Google Scholar 

  • Hughes TJR, Pister KS (1978) Consistent linearization in mechanics of solids and structures. Comput Struct 8:391–397

    Article  MathSciNet  MATH  Google Scholar 

  • Jaunzemis W (1967) Continuum mechanics. Macmillan, New York

    MATH  Google Scholar 

  • Kaliske M, Rothert H (1997) Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput Mech 18:228–239

    Article  MATH  Google Scholar 

  • Lubliner J (1985) A model of rubber viscoelasticity. Mech Res Commun 12(2):93–99

    Article  Google Scholar 

  • Low G, Kruse SA, Lomas DJ (2016) General review of magnetic resonance elastrography. World J Radiol 8(1):59–72. https://doi.org/10.4329/wjr.v8.i1.59

    Article  Google Scholar 

  • Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Mooney M (1940) A theory of large elastic deformations. J Appl Phys 11:582–592

    Article  MATH  Google Scholar 

  • Murphy JG (2013) Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur J Mech A Solids 42:90–96

    Article  MathSciNet  Google Scholar 

  • Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42:339–362

    Article  Google Scholar 

  • Oberai AA, Gokhale NH, FeiJoo GR (2003) Solution of inverse problems in elasticity imaging using the adjoint method. Inverse Problems 19:297–313

    Article  MathSciNet  MATH  Google Scholar 

  • Oberai AA, Gokhale NH, Doyley MM, Bamber JC (2004) Evaluation of the adjoint equation based algorithm for elasticity imaging. Phys Med Biol 49:2955–2974

    Article  Google Scholar 

  • Oberai AA, Gokhale NH, Goenezen S, Barbone PE, Hall TJ, Sommer AM, Jiang J (2009) Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility. Phys Med Biol 54(5):1191–1207. https://doi.org/10.1088/0031-9155/54/5/006

    Article  Google Scholar 

  • Ogden RW (1972a) Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A326:565–584

    Article  MATH  Google Scholar 

  • Ogden RW (1972b) Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids. Proc Roy Soc Lond A 328:567–583

    Article  MATH  Google Scholar 

  • Ogden RW (1997) Non-linear elastic deformations. Dover, New York

    Google Scholar 

  • Ophir J, Alam SK, Garra BS, Kallel F, Konofagou EE, Krouskop T, Merritt CR, Righetti R, Souchon R, Srinivasan S, Varghese T (2002) Elastography: imaging the elastic properties of soft tissues with ultrasound. J Med Ultrason 29:155. https://doi.org/10.1007/BF02480847

    Article  Google Scholar 

  • Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35:3455–3482

    Article  MATH  Google Scholar 

  • Riande E, Diaz-Calleja R, Prolongo MG, Masegsa RM, Salom C (2000) Polymer viscoelasticity—stress and strain in practice. Marcel Dekker, New York

    Google Scholar 

  • Rivlin RS (1948) Large elastic deformation of isotropic materials IV: further developments of the general theory. Philos Trans R Soc Lond A A241:379–397

    Article  MathSciNet  MATH  Google Scholar 

  • Rivlin RS (1956) Large elastic deformations. In: Eirich RF (ed) Rheology: theory and applications, 1st edn. Academic, New York

    Google Scholar 

  • Schrodt M, Benderoth G, Kühhorn A, Silber G (2005) Hyperelastic description of polymer soft foams at finite deformations. Tech Mech 25(3–4):162–173

    Google Scholar 

  • Seth BR (1964) Generalized strain measure with applications to physical problems. In: Reiner M, Abir D (eds) Second-order effects in elasticity, plasticity and fluid dynamics. Pergamon, Oxford, pp 162–172

    Google Scholar 

  • Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  • Storakers B (1986) On material representation and constitutive branching in finite compressible elasticity. J Mech Phys Solids 34(2):125–145

    Article  Google Scholar 

  • Sussman T, Bathe KJ (1987) A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput Struct 26:357–409

    Article  MATH  Google Scholar 

  • Truesdell C, Noll W (1965) The non-linear theories of mechanics. In: Flügge S (ed) Encyclopedia of physics, vol 3, 3rd edn. Springer, Heidelberg

    Google Scholar 

  • Venkatesh K, Srinivasa Murthy PL (2012) Experimental validation and data acquisition for hyperelastic material models in finite element analysis. Int J Mech Ind Eng 2(4):72–76

    Google Scholar 

  • Veronda DR, Westmann RA (1970) Mechanical characterization of skin—finite deformations. J Biomech 3(1):111–122, IN9, 123–124

    Article  Google Scholar 

  • Volokh K (2016) Mechanics of soft materials. Springer, Singapore

    Book  Google Scholar 

  • Yeoh OH (1990) Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem Technol 63:792–805

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hackett, R.M. (2018). Stress Measures. In: Hyperelasticity Primer. Springer, Cham. https://doi.org/10.1007/978-3-319-73201-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73201-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73200-8

  • Online ISBN: 978-3-319-73201-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics