Skip to main content

Incompressible Homogeneous Anisotropic Turbulence: Pure Shear

  • Chapter
  • First Online:
Homogeneous Turbulence Dynamics
  • 2057 Accesses

Abstract

This chapter is devoted to the pure shear case. Main results of Reynolds Stress Models are given, and the specificity of Rapid Distortion Theory is investigated for transient growth, in terms of poloidal/ toroidal modal decomposition. The scale-by-scale return to isotropy is addressed, with the support of the simplified model in terms of spherically averaged descriptors. New DNS results are exploited to show a quasi-balance between spectral transfer and dissipation transfer, for largest scales, at Reynolds numbers much smaller than those in decaying isotropic turbulence. Finally, a discussion of regeneration cycles and self-sustaining process is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In isotropic turbulence, all these quantities reduce to a single one, say \(L_f\), with \(L^{(n)}_{nn} = L_f\) (any n, no summation on it), \(L^{(n)}_{ii} = L_f/2\) if \(n\ne i\) (no summation on i) and \(L^{(n)}_{ij}=0\) if \(i \ne j\). Accordingly, departure from this simple relationship reflects anisotropic structure too.

  2. 2.

    It is recalled that in this case one has \(\det \mathsf{F} =1\).

  3. 3.

    Hamiltonian formalism is also very important in the “Russian” school of wave turbulence theory.

  4. 4.

    Confusing notations in the original paper have been corrected here, as far as possible; the EDQNM-like integral uses a polar-spherical system of coordinates for \({\varvec{p}}\) with polar axis \(\varvec{k}\). Formulation in terms of the bipolar system of coordinates (as in Chap. 4) is easily recovered from

    $$\iiint (...) d^3 {\varvec{p}}= 2 \pi \int ^{\infty }_0 p^2 dp \int ^{\pi }_0 (...) sin \theta _p d \theta _p = 2 \pi \iint _{\Delta _k} \frac{pq}{k} ( ...) dp dq.$$
  5. 5.

    A similar procedure is used in Kaneda (1993), Kaneda et al. (1999) to compute coefficients of the Taylor-series expansion of both Lagrangian and Eulerian velocity correlations.

  6. 6.

    Such a simplification can be obtained in several ways. First, assuming that velocity fluctuations are nearly Gaussian, third-order moments are identically null. Second, looking at the structure of this term, it is seen that the difference between the two third-moment terms vanishes in isotropic turbulence. Then, assuming that we are dealing with weak departure from isotropy in the inertial range, this term can be assumed to be small in front of the other ones.

  7. 7.

    It is recalled here that an external length scale, other than those related to the fluctuating flow statistics, is missing in strictly homogeneous turbulence.

References

  • Brasseur, J.G., Wang, Q.: Structural evolution of intermittency and anisotropy at different scales analyzed using three-dimensional wavelet transforms. Phys. Fluids 4, 2538–2554 (1992)

    Article  ADS  MATH  Google Scholar 

  • Brethouwer, G.: The effect of rotation on rapidly sheared homogeneous turbulence and passive scalar transport. Linear theory and direct numerical simulation. J. Fluid Mech. 542, 305–342 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Briard, A., Gomez, T., Mons, V., Sagaut, P.: Decay and growth laws in homogeneous shear turbulence. J. Turbul. 17(7), 699–726 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Briard, A., Iyer, M., Gomez, T.: Anisotropic spectral modeling for unstably stratified homogeneous turbulence. Phys. Rev. Fluids 2, 044604 (2017)

    Article  ADS  Google Scholar 

  • Cambon, C.: Contribution to single and double point modelling of homogeneous turbulence, Annual Research Briefs, Stanford University and NASA Ames, Center for Turbulence Research (1990)

    Google Scholar 

  • Cambon, C., Jeandel, D., Mathieu, M.: Spectral modelling of homogeneous non-isotropic turbulence. J. Fluid Mech. 104, 247–262 (1981)

    Article  ADS  MATH  Google Scholar 

  • Cardesa, J.I., Vela-Martin, A., Dong, S., Jiménez, J.: The temporal evolution of the energy flux across scales in homogeneous turbulence. Phys. Fluids 27, 111702 (2015)

    Article  ADS  Google Scholar 

  • Chagelishvili, G.D., Zahn, J.P., Tevzadze, A.G., Lominadze, J.G.: On hydrodynamic shear turbulence in Keplerian discs: via transient growth to bypass transition. A & A 402, 401–407 (2003)

    Article  ADS  Google Scholar 

  • Clark, T.T., Zemach, C.: A spectral model applied to homogeneous turbulence. Phys. Fluids 7, 1674–1694 (1995)

    Google Scholar 

  • Corrsin, S.: On local isotropy in turbulent shear flow. NACA RM 58B11 (1958)

    Google Scholar 

  • De Mare, M., Mann, J.: On the space-time structure of sheared turbulence. Boundary-Layer Meteorol. 160, 453–474 (2016)

    Article  ADS  Google Scholar 

  • De Souza, F.A., Nguyen, V.D., Tavoularis, S.: The structure of highly sheared turbulence. J. Fluid Mech. 303, 155–167 (1995)

    Article  ADS  Google Scholar 

  • Ferchichi, M., Tavoularis, S.: Reynolds number effects on the fine structure of uniformly sheared turbulence. Phys. Fluids 12, 2942–2953 (2000)

    Article  ADS  MATH  Google Scholar 

  • Ferchichi, M., Tavoularis, S.: Scalar probability density function and fine structure in uniformly sheared turbulence. J. Fluid Mech. 461, 155–182 (2002)

    Google Scholar 

  • Garg, S., Warhaft, Z.: On the small scale structure of simple shear flow. Phys. Fluids 10, 662–673 (1998)

    Article  ADS  Google Scholar 

  • George, W.K., Beuther, P.D., Arndt, R.E.A.: Pressure spectra in turbulent shear flows. J. Fluid Mech. 148, 155–191 (1984)

    Article  ADS  MATH  Google Scholar 

  • George, W.K., Gibson, M.M.: The self-preservation of homogeneous shear flow turbulence. Exp. Fluids 13, 229–238 (1992)

    Article  Google Scholar 

  • Gualtieri, P., Casciola, C.M., Benzi, R., Amati, G., Piva, R.: Scaling laws and intermittency in homogeneous shear flows. Phys. Fluids 14, 583–596 (2002)

    Article  ADS  MATH  Google Scholar 

  • Hamilton, J.M., Kim, J., Waleffe, F.: Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317–348 (1995)

    Article  ADS  MATH  Google Scholar 

  • Hanazaki, H., Hunt, J.C.R.: Linear processes in unsteady stably stratified shear turbulence with mean shear. J. Fluid Mech. 507, 1–42 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Isaza, J.C., Collins, L.R.: On the asymptotic behaviour of large-scale turbulence in homogeneous shear flow. J. Fluid Mech. 367, 213–239 (2009)

    Google Scholar 

  • Ishihara, T., Yoshida, K., Kaneda, Y.: Anisotropic velocity correlation spectrum at small scale in a homogeneous turbulent shear flow. Phys. Rev. Lett. 88(15), 154501 (2002)

    Article  ADS  Google Scholar 

  • Jimenez, J., Kawahara, G., Simens, M.P., Nagata, M., Shiba, M.: Characterization of near-wall turbulence in terms of equilibrium and bursting solutions. Phys. Fluids 17, 015105 (2005)

    Article  ADS  MATH  Google Scholar 

  • Iida, O., Iwatsuki, M., Nagano, Y.: Vortical turbulence structure and transport mechanism in a homogeneous shear flow. Phys. Fluids 12, 2895–2905 (2000)

    Article  ADS  MATH  Google Scholar 

  • Kaneda, Y.: Lagrangian and Eulerian time correlations in turbulence. Phys. Fluids A 5(11), 2835–2845 (1993)

    Article  ADS  MATH  Google Scholar 

  • Kaneda, Y., Ishihara, T., Gotoh, K.: Taylor expansions in powers of time of Lagrangian and Eulerian two-point two-time velocity correlations in turbulence. Phys. Fluids 11, 2154–2166 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kida, S., Tanaka, M.: Dynamics of vortical structures in a homogeneous shear flow. J. Fluid Mech. 274, 43–68 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lee, M.J., Kim, J., Moin, P.: Structure of turbulence at high shear rate. J. Fluid Mech. 216, 561–583 (1990)

    Article  ADS  Google Scholar 

  • Lumley, J.L.: Similarity and the turbulent energy spectrum. Phys. Fluids 10(4), 855–858 (1967)

    Article  ADS  Google Scholar 

  • Mann, J.: The spatial structure of neutral surface-layer turbulence. J. Fluid Mech. 273, 141–168 (1994)

    Article  ADS  MATH  Google Scholar 

  • Mons, V., Cambon, C., Sagaut, P.: A spectral model for homogeneous shear-driven anisotropic turbulence in terms of spherically averaged descriptors. J. Fluid Mech. 788, 147–182 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Nazarenko, S.V., Zakharov, V.E.: The role of he convective modes and sheared variables in the Hamiltonian-dynamics of uniform-shear-flow perturbations. Phys. Lett. A 191(5–6), 403–408 (1994)

    Article  ADS  Google Scholar 

  • Nickels, T.B., Marusic, I., Hafez, S., Chong, M.S.: Evidence of a $k^{-1}$ law in a high-Reynolds-number turbulent boundary layer. Phys. Rev. Lett. 95, 074501 (2005)

    Article  ADS  Google Scholar 

  • Orr, W.M.F.: The stability or instability of the steady motions of a perfect liquid. In: Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, vol. 27, pp. 9–68 (1909)

    Google Scholar 

  • Piquet, J.: Turbulent flows. Models and Physics, 2nd edn. Springer, Berlin (2001)

    Google Scholar 

  • Pumir, A.: Turbulence in homogeneous shear flows. Phys. Fluids 8, 3112–3127 (1996)

    Article  ADS  MATH  Google Scholar 

  • Pumir, A., Shraiman, B.I.: Persistent small scale anisotropy in homogeneous shear flows. Phys. Rev. Lett. 75(17), 3114–3117 (1995)

    Article  ADS  Google Scholar 

  • Rogallo, R.S.: Numerical experiments in homogeneous turbulence. Technical Memorandum NASA-TM-81315 (1981)

    Google Scholar 

  • Rogers, M.: The structure of a passive scalar field with a uniform mean gradient in rapidly sheared homogeneous turbulent flow. Phys. Fluids A 3(1), 144–154 (1991)

    Article  ADS  MATH  Google Scholar 

  • Rohr, J.J., Itsweire, E.C., Helland, K.N., Van Atta, C.W.: An investigation of the growth of turbulence in a uniform-mean-shear flow. J. Fluid Mech. 187, 1–33 (1988)

    Article  ADS  MATH  Google Scholar 

  • Salhi, A., Cambon, C.: An analysis of rotating shear flow using linear theory and DNS and LES results. J. Fluid Mech. 347, 171–195 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Salhi, A., Jacobitz, F., Schneider, K., Cambon, C.: Nonlinear dynamics and anisotropic structure of rotating sheared turbulence. Phys. Rev. E 89, 013020 (2014)

    Article  ADS  Google Scholar 

  • Schumacher, J.: Relation between shear parameter and reynolds number in statistically stationary turbulent shear flows. Phys. Fluids 16, 3094–3102 (2004)

    Google Scholar 

  • Sekimoto, Dong, Jiménez.: DNS of statistically stationary and homogeneous shear turbulence and its relation to other shear flows. Phys. Fluids 28, 035101 (2016)

    Google Scholar 

  • Shirani, E., Ferziger, J.H., Reynolds, W.C.: Mixing of a passive scalar in isotropic and sheared homogeneous turbulence. Tech. Rep. NASA-CR-164938 Tf-15. Stanford (CA): Department of Mechanical Engineering, Stanford University (1981)

    Google Scholar 

  • Sukheswalla, P., Vaithianathan, T., Collins, L.R.: Simulation of homogeneous turbulent shear flows at higher reynolds numbers: numerical challenges and a remedy. J. Turbulence 14, 60–97 (2013)

    Google Scholar 

  • Tavoularis, S., Corrsin, S. J.: Experiments in nearly homogenous turbulent shear flow with a uniform mean temperature gradient. Part 1. J. Fluid Mech. 10, 311–347 (1981)

    Google Scholar 

  • Tavoularis, S., Karnik, U.: Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence. J. Fluid Mech. 204, 457–478 (1989)

    Google Scholar 

  • Townsend, A.A.: The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press, Cambridge (1976)

    Google Scholar 

  • Waleffe, F.: On a self-sustaining process in shear flows. Phys. Fluids 9, 883–900 (1996)

    Article  ADS  Google Scholar 

  • Waleffe, F.: Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 1517–1534 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Weinstock, J.: Analytical theory of homogeneous shear turbulence. J. Fluid Mech. 727, 256–281 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  • Wilczek, M., Stevens, R., Meneveau, C.: Spatio-temporal spectra in the logarithmic layer of wall turbulence: large-eddy simulations and simple models. J. Fluid Mech. 769(1–11), R1 (2015)

    Article  ADS  Google Scholar 

  • Zhao, X., He, G.W.: Space-time correlations of fluctuating velocities in turbulent shear flows. Phys. Rev. E 79, 046316 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Sagaut .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sagaut, P., Cambon, C. (2018). Incompressible Homogeneous Anisotropic Turbulence: Pure Shear. In: Homogeneous Turbulence Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-73162-9_9

Download citation

Publish with us

Policies and ethics