Skip to main content

High-Throughput Techniques As Support for Knowledge-Based Spatial Conservation Prioritization in Mangrove Ecosystems

  • Chapter
  • First Online:
Threats to Mangrove Forests

Part of the book series: Coastal Research Library ((COASTALRL,volume 25))

Abstract

The conservation of functioning ecosystems worldwide is warranted by the need for reliable and sustainable provision of ecosystem services locally, regionally and globally. Mangroves provide numerous ecosystem services both to local human communities, e.g., coastal protection or food security, and to mankind worldwide, e.g., climate change-mitigation. Nonetheless they still lack protection in many places of occurrence. Here we base spatial prioritization and planning of mangrove conservation on functional biodiversity and service-relevant ecosystem processes, being studied through cutting-edge genetic and chemical analyses of sediments to unravel the links between biodiversity, biotic interactions, ecosystem processes and ecosystem services. We nonetheless recommend multidisciplinary approaches when planning protected area networks for the sustainable use and provision of ecosystem services and pledge for (i) considering and prioritizing societal, biological and economic values of mangroves, (ii) integrating adjacent ecosystems to maintain connectivity, and (iii) taking into account the spatial and temporal dynamics of mangrove ecosystems and their community composition under global change, i.e. changes in the spatial distribution of species and services over time. Beyond the example of mangroves and the turnover of organic matter in mangrove sediments described herein, our approach to spatial conservation prioritization and planning is applicable to any other ecosystems and their services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Transforming Our World: The 2030 Agenda for Sustainable Development (UNGA Resolution A/RES/70/1, 25 September 2015) (‘2030 Agenda’).

References

  • Abram F (2015) Systems-based approaches to unravel multi-species microbial community functioning. Comput Struct Biotechnol J 13:24–32

    Article  PubMed  CAS  Google Scholar 

  • Adam E, Mutanga O, Rugege D (2010) Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetl Ecol Manag 18:281–296

    Article  Google Scholar 

  • Alongi DM (2009) The energetics of mangrove forests. Springer, New York

    Google Scholar 

  • Alongi DM (2014) Carbon cycling and storage in mangrove forests. Annu Rev Mar Sci 6:195–219

    Article  Google Scholar 

  • Andreote FD, Jiménez DJ, Chaves D, Dias ACF, Luvizotto DM, Dini-Andreote F et al (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS ONE 7:e38600. https://doi.org/10.1371/journal.pone.0038600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asner GP, Martin RE, Knapp DE, Tupayachi R, Anderson CB, Sinca F, Vaughn NR, Llactayo W (2017) Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355:385–389

    Article  PubMed  CAS  Google Scholar 

  • Bakkar T, Helfer V, Himmelsbach R, Zimmer M (2017) Chemical changes in detrital matter upon digestive processes in a sesarmid crab feeding on mangrove leaf litter. Hydrobiologia. https://doi.org/10.1007/s10750-017-3319-8

  • Ball IR, Possingham HP, Watts M (2009) Marxan and relatives: software for spatial conservation prioritisation. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University Press, Oxford, pp 185–195

    Google Scholar 

  • Barnes MA, Turner CR (2016) The ecology of environmental DNA and implications for conservation genetics. Conserv Genet 17:1–17

    Article  CAS  Google Scholar 

  • Basak P, Majumder NS, Nag S, Bhattacharyya A, Roy D, Chakraborty A, Sengupta S, Roy A, Mukherjee A, Pattanayak R, Ghosh A, Chattopadhyay D, Bhattacharyya M (2015) Spatiotemporal analysis of bacterial diversity in sediments of Sundarbans using parallel 16S rRNA gene tag sequencing. Microb Ecol 69:500–511

    Article  PubMed  Google Scholar 

  • Basak P, Pramanik A, Sengupta S, Nag S, Bhattacharyya A, Roy D, Pattanayak R, Ghosh A, Chattopadhyay D, Bhattacharyya M (2016) Bacterial diversity assessment of pristine mangrove microbial community from Dhulibhashani, Sundarbans using 16S rRNA gene tag sequencing. Genomics Data 7:76–78

    Article  PubMed  Google Scholar 

  • Baskin Y (1994) Ecosystem function of biodiversity. Bioscience 44:657–660

    Article  Google Scholar 

  • Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:1–14

    Article  Google Scholar 

  • Bhattacharyya A, Majumder N, Basak P, Roy D, Nag S, Haldar A, Mukherjee S, Chattopadhyay D, Mitra S, Bhattacharyya M, Ghosh A (2015) Diversity and distribution of archaea in the mangrove sediment of Sundarbans. Archaea 2015, Article ID 968582, 14 p. https://doi.org/10.1155/2015/968582

  • Bohan DA, Vacher C, Tamaddoni-Nezhad A, Raybould A, Dumbrell AJ, Woodward G (2017) Next-generation global biomonitoring: large-scale, automated reconstruction of ecological networks. Trends Ecol Evol 32:477–487

    Article  PubMed  Google Scholar 

  • Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, Yu DW, de Bruyn M (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:358–367

    Article  PubMed  Google Scholar 

  • Bouchez A, Pascault N, Chardon C, Bouvy M, Cecchi P, Lambs L, Herteman M, Fromard F, Got P, Leboulanger C (2013) Mangrove microbial diversity and the impact of trophic contamination. Mar Pollut Bull 66:39–46

    Article  PubMed  CAS  Google Scholar 

  • Brose U, Hillebrand H (2016) Biodiversity and ecosystem functioning in dynamic landscapes. Philos Trans Royal Soc B Biol Sci 371(1694):20150267. https://doi.org/10.1098/rstb.2015.0267

    Article  Google Scholar 

  • Buurman P, Roscoe R (2011) Different chemical composition of free light, occluded light and extractable SOM fractions in soils of Cerrado and tilled and untilled fields, Minas Gerais, Brazil: a pyrolysis–GC/MS study. Eur J Soil Sci 62:253–266. https://doi.org/10.1111/j.1365-2389.2010.01327.x

    Article  CAS  Google Scholar 

  • Buurman P, Nierop KGJ, Kaal J, Senesi N (2009) Analytical pyrolysis and thermally assisted hydrolysis and methylation of EUROSOIL humic acid samples – a key to their source. Geoderma 150:10–22

    Article  CAS  Google Scholar 

  • Cannicci S, Burrows D, Fratini S, Smith UHI, Offenberg J, Dahdouh-Guebas F (2008) Faunal impact on vegetation structure and ecosystem function in mangrove forests: a review. Aquat Bot 89:186–200

    Article  Google Scholar 

  • Chambers LG, Guevara R, Boyer JN, Troxler TG, Davis SE (2016) Effects of salinity and inundation on microbial community structure and function in a mangrove peat soil. Wetlands 36:361–371. https://doi.org/10.1007/s13157-016-0745-8

    Article  Google Scholar 

  • Chan KMA, Shaw MR, Cameron DR, Underwood EC, Daily GC (2006) Conserv Plan Ecosyst Serv 4:e379. https://doi.org/10.1371/journal.pbio.0040379

    Article  CAS  Google Scholar 

  • Cimon-Morin J, Darveau M, Poulin M (2013) Fostering synergies between ecosystem services and biodiversity in conservation planning: a review. Biol Conserv 166:144–154

    Article  Google Scholar 

  • Cimon-Morin J, Darveau M, Poulin M (2014) Ecosystem services expand the biodiversity conservation toolbox – a response to deliège and neuteleers. Biol Conserv 172:219–220

    Article  Google Scholar 

  • Clare EL (2014) Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications. Evol Appl 7:1144–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Crase B, Liedloff A, Vesk PA, Burgman MA, Wintle BA (2013) Hydroperiod is the main driver of the spatial pattern of dominance in mangrove communities. Glob Ecol Biogeogr 22:806–817

    Article  Google Scholar 

  • Creer S, Deiner K, Frey S, Porazinska D, Taberlet P, Thomas WK, Potter C, Bik HM (2016) The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol Evol 7:1008–1018

    Article  Google Scholar 

  • Das S, De TK, Mukherjee A, De M, Jana TK (2015) Influence of microbial composition on the carbon storage capacity of the mangrove soil at the land-ocean boundary in the Sundarban mangrove ecosystem. India Geomicrobiol J. https://doi.org/10.1080/01490451.2015.1093567

  • Dayton PK (1972) Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. In: Parker BC (ed) Proceedings of the colloquium on conservation problems in Antarctica. Allen Press, Lawrence, pp 81–95

    Google Scholar 

  • De Groot RS (1992) Functions of nature: evaluation of nature in environmental planning, management and decision making. Wolters-Noordhoff, Groningen

    Google Scholar 

  • De Groot RS, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41:393–408

    Article  Google Scholar 

  • Deagle BE, Jarman SN, Coissac E, Pompanon F, Taberlet P (2014) DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biol Lett 10:20140562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deiner K, Bik HM, Mächler E et al (2017) Environmental DNA metabarcoding: Transforming how we survey animal and plantcommunities. Mol Ecol 26:5872–5895. https://doi.org/10.1111/mec.14350

    Article  PubMed  Google Scholar 

  • Deliège G, Neuteleers S (2014) Ecosystem services as an argument for biodiversity preservation: why its strength is its problem – reply to Cimon-Morin et al. Biol Conserv 172:218–218

    Article  Google Scholar 

  • Dittmar T, Hertkorn N, Kattner G, Lara RJ (2006) Mangroves, a major source of dissolved organic carbon to the oceans. Glob Biogeochem Cycles 20:GB1012. https://doi.org/10.1029/2005GB002570

    Article  CAS  Google Scholar 

  • Donato D, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297

    Article  CAS  Google Scholar 

  • Du X, Zeisel SH (2013) Spectral deconvolution for gas chromatography mass spectrometry-based metabolomics: current status and future perspectives. Comput Struct Biotechnol J 4:e201201013

    Google Scholar 

  • Elith J, Leathwick JR (2009) Conservation prioritization using species distribution models. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University Press, Oxford, pp 70–93

    Google Scholar 

  • Ellison AM, Farnsworth EJ (2001) Mangrove communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, Sunderland

    Google Scholar 

  • Ellison AM, Farnsworth EJ, Merkt RE (1999) Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Glob Ecol Biogeogr 8:95–115

    Article  Google Scholar 

  • Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR et al (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3:479–486

    Article  Google Scholar 

  • Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Ficetola GF, Coissac E, Zundel S, Riaz T, Shehzad W, Bessière J, Taberlet P, Pompanon F (2010) An in silico approach for the evaluation of DNA barcodes. BMC Genomics 11:434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ficetola GF, Pansu J, Bonin A, Coissac E, Giguet-Covex C, De Barba M, Gielly L, Lopes CM, Boyer F, Pompanon F, Rayé G, Taberlet P (2015) Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol Ecol Resour 15:543–556

    Article  PubMed  CAS  Google Scholar 

  • Ficetola GF, Taberlet P, Coissac E (2016) How to limit false positives in environmental DNA and metabarcoding? Mol Ecol Resour 16:604–607

    Article  PubMed  CAS  Google Scholar 

  • Foote AD, Thomsen PF, Sveegaard S, Wahlberg M, Kielgast J, Kyhn LA et al (2012) Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS ONE 7:e41781. https://doi.org/10.1371/journal.pone.0041781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuentes M, Hidalgo C, González-Martín I, Hernández-Hierro JM, Govaerts B, Sayrre KD, Etchevers J (2012) NIR spectroscopy: an alternative for soil analysis. Commun Soil Sci Plant Anal 43:346–356

    Article  CAS  Google Scholar 

  • Gardham S, Hose GC, Stephenson S, Chariton AA (2014) DNA metabarcoding meets experimental ecotoxicology: advancing knowledge on the ecological effects of copper in freshwater ecosystems. Adv Ecol Res 51:79–104

    Article  Google Scholar 

  • Gerber L, Eliasson M, Trygg J, Moritz T, Sundberg B (2012) Multivariate curve resolution provides a high-throughput data processing pipeline for pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrolysis 95:95–100

    Article  CAS  Google Scholar 

  • Ghizelini AM, Mendonça-Hagler LCS, Macrae A (2012) Microbial diversity in Brazilian mangrove sediments – a mini review. Braz J Microbiol 43:1242–1254

    Article  PubMed  PubMed Central  Google Scholar 

  • Giguet-Covex C, Pansu J, Arnaud F, Rey P-J, Griggo C, Gielly L, Domaizon I, Coissac E, David F, Choler P, Poulenard J, Taberlet P (2014) Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat Commun 5:3211

    Article  PubMed  CAS  Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159

    Article  Google Scholar 

  • Gomes NC, Cleary DF, Calado R, Costa R (2011) Mangrove bacterial richness. Commun Integr Biol 4:419–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Groom C, White NE, Mitchell N, Roberts JD, Mawson P (2016) Assessing the spatial ecology and resource use of a mobile and endangered species in an urbanized landscape using satellite telemetry and DNA faecal metabarcoding. Ibis 159:390–405

    Article  Google Scholar 

  • Guardiola M, Uriz MJ, Taberlet P, Coissac E, Wangensteen OS, Turon X (2015) Deep-sea, deep-sequencing: metabarcoding extracellular DNA from sediments of marine canyons. PLoS ONE 10:e0139633. https://doi.org/10.1371/journal.pone.0139633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hand BK, Lowe WH, Kovach RP, Muhlfeld CC, Luikart G (2015) Landscape community genomics: understanding eco-evolutionary processes in complex environments. Trends Ecol Evol 30:161–168

    Article  PubMed  Google Scholar 

  • Harborne AR, Mumby PJ, Micheli F, Perry CT, Dahlgren CP, Holmes KE, Brumbaugh DR (2006) The functional value of caribbean coral reef, seagrass and mangrove habitats to ecosystem processes. Adv Mar Biol 50:57–189

    Article  PubMed  Google Scholar 

  • Helmuth B, Mieszkowska N, Moore P, Hawkins SJ (2006) Living on the edge of two changingworlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev Ecol Evol Syst 37:373–404

    Article  Google Scholar 

  • Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33:265–278

    Article  CAS  Google Scholar 

  • Hübner L, Pennings SC, Zimmer M (2015) Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach. Oecologia 178:999–1015

    Article  PubMed  Google Scholar 

  • Hutchison J, Manica A, Swetnam R, Balmford A, Spalding M (2014) Predicting global patterns in mangrove forest biomass. Conserv Lett 7:233–240

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ismail Z, Sam CK, Yin WF, Chan KG (2017) Tropical mangrove swamp metagenome reveals unusual abundance of ecologically important microbes. Curr Sci 112:1698–1703

    Article  Google Scholar 

  • Jennerjahn TC, Ittekot V (2002) Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89:23–30

    Article  PubMed  Google Scholar 

  • Joly S, Jonathan Davies T, Archambault A, Bruneau A, Derry A, Kembel SW, Peres-Neto P, Vamosi J, Wheeler TA (2014) Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead. Mol Ecol Resour 14:221–232

    Article  PubMed  CAS  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Kleinebecker T, Poelen MDM, Smolders AJP, Lamers LPM, Hölzel N (2013) Fast and inexpensive detection of total and extractable element concentrations in aquatic sediments using Near-Infrared Reflectance Spectroscopy (NIRS). PLoS ONE 8(7):e70517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Komiyama A, Ong JE, Poungparn S (2008) Allometry, biomass, and productivity of mangrove forests: a review. Aquat Bot 89:128–137

    Article  Google Scholar 

  • Kristensen E (2007) Carbon balance in mangrove sediments: the driving processes and their controls. In: Tateda Y, Upstill-Goddard R, Goreau T, Alongi D, Nose A, Kristensen E, Wattayakorn G (eds) Greenhouse gas and carbon balances in mangrove coastal ecosystems. Maruzen, Tokyo, pp 61–78

    Google Scholar 

  • Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89:201–219

    Article  CAS  Google Scholar 

  • Lahoz-Monfort JJ, Guillera-Arroita G, Tingley R (2016) Statistical approaches to account for false-positive errors in environmental DNA samples. Mol Ecol Resour 16:673–685

    Article  PubMed  CAS  Google Scholar 

  • Leathwick J, Moilanen A, Francis M, Elith J, Taylor P, Julian K, Hastie T, Duffy C (2008) Novel methods for the design and evaluation of marine protected areas in offshore waters. Conserv Lett 1:91–102

    Article  Google Scholar 

  • Liang J-B, Chen Y-Q, Lan C-Y, Tam NFY, Zan Q-J, Huang L-N (2007) Recovery of novel bacterial diversity from mangrove sediment. Mar Biol 150:739–747

    Article  Google Scholar 

  • Lovelock CE (2008) Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11:342–354

    Article  CAS  Google Scholar 

  • Luo L, Gu JD (2016) Nutrient limitation status in a subtropical mangrove ecosystem revealed by analysis of enzymatic stoichiometry and microbial abundance for sediment carbon cycling. Int Biodeterior Biodegrad https://doi.org/10.1016/j.ibiod.2016.04.023

  • MacKenzie DJ, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M et al (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Millennium ecosystem assessment – ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC. 86 p

    Google Scholar 

  • Moilanen A (2012) Spatial conservation prioritization in data-poor areas of the world. Natureza Conservação 10:12–19

    Article  Google Scholar 

  • Moilanen A, Franco AMA, Early R, Fox R, Wintle B, Thomas CD (2005) Prioritising multiple-use landscapes for conservation: methods for large multi-species planning problems. Proc Royal Soc Lond B Biol Sci 272:1885–1891

    Article  Google Scholar 

  • Nogués-Bravo D (2009) Predicting the past distribution of species climatic niches. Glob Ecol Biogeogr 18:521–531

    Article  Google Scholar 

  • Parducci L, Jørgensen T, Tollefsrud MM, Elverland E, Alm T, Fontana SL et al (2012) Glacial survival of boreal trees in northern Scandinavia. Science 335:1083–1086

    Article  PubMed  CAS  Google Scholar 

  • Pearman PB, Randin CF, Broennimann O, Vittoz P, van der Knaap WO, Engler R, Lay L, Zimmermann NE, Guisan A (2008) Prediction of plant species distributions across six millennia. Ecol Lett 11:357–369

    Article  PubMed  Google Scholar 

  • Pedersen MW, Overballe-Petersen S, Ermini L, Sarkissian CD, Haile J, Hellstrom M et al (2015) Ancient and modern environmental DNA. Philos Trans Royal Soc B Biol Sci 370:20130383. https://doi.org/10.1098/rstb.2013.0383

    Article  CAS  Google Scholar 

  • Pestana D, Pülmanns N, Nordhaus I, Diele K, Zimmer M (2017) The influence of crab burrows on sediment salinity in a Rhizophora- dominated mangrove forest in North Brazil during the dry season. Hydrobiologia. https://doi.org/10.1007/s10750-017-3282-4

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316

    Article  Google Scholar 

  • Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Gretchen D, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. Bioscience 46:609–620

    Article  Google Scholar 

  • Pullin AS, Knight TM (2003) Support for decision making in conservation practice: an evidence-based approach. J Nat Conserv 11:83–90

    Article  Google Scholar 

  • Pülmanns N, Nordhaus I, Diele K, Mehlig U (2015) Artificial crab burrows facilitate desalting of rooted mangrove sediment in a microcosm study. J Mar Sci Eng 3:539–559

    Article  Google Scholar 

  • Pülmanns N, Mehlig U, Nordhaus I, Saint-Paul U, Diele K (2016) Mangrove crab Ucides cordatus removal does not affect sediment parameters and stipule production in a one year experiment in Northern Brazil. PLoS ONE 11:e0167375. https://doi.org/10.1371/journal.pone.0167375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38:127–145

    Article  Google Scholar 

  • Record S, Charney ND, Zakaria RM, Ellison AM (2013) Projecting global mangrove species and community distributions under climate change. Ecosphere 4:1–23

    Article  Google Scholar 

  • Reef R, Atwood TB, Samper-Villarreal J, Adame MF, Sampayo EM, Lovelock CE (2017) Using eDNA todetermine the source of organic carbon in seagrass meadows. Limnol Oceanogr 62:1254–1265. https://doi.org/10.1002/lno.1049

    Article  CAS  Google Scholar 

  • Riaz T, Shehzad W, Viari A, Pompanon F, Taberlet P, Coissac E (2011) ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res 39:e145. https://doi.org/10.1093/nar/gkr732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richards DR, Friess DA (2016) Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc Natl Acad Sci U S A 113:344–349

    Article  PubMed  CAS  Google Scholar 

  • Sarker SK, Reeve R, Thompson J, Paul NK, Matthiopoulos J (2016) Are we failing to protect threatened mangroves in the Sundarbans world heritage ecosystem? Sci Rep 6:21234. https://doi.org/10.1038/srep21234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schellekens J, Buurman P (2011) n-Alkane distributions as palaeoclimatic proxies in ombrotrophic peat: the role of decomposition and dominant vegetation. Geoderma 164:112–121

    Article  CAS  Google Scholar 

  • Schellekens J, Buurman P, Fraga I, Martínez-Cortizas A (2011) Holocene vegetation and hydrologic changes inferred from molecular vegetation markers in peat, Penido Vello (Galicia Spain). Palaeogeogr Palaeoclimatol Palaeoecol 299:56–69

    Article  Google Scholar 

  • Sengupta S, Pramanik A, Ghosh A, Bhattacharyya M (2015) Antimicrobial activities of actinomycetes isolated from unexplored regions of Sundarbans mangrove ecosystem. BMC Microbiol 15:1–16

    Article  CAS  Google Scholar 

  • Serafy JE, Shideler GS, Araújo RJ, Nagelkerken I (2015) Mangroves enhance reef fish abundance at the Caribbean regional scale. PLoS ONE 10:e0142022. https://doi.org/10.1371/journal.pone.0142022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shang Y, Sikorski J, Bonkowski M, Fiore-Donno A-M, Kandeler E, Marhan S et al (2017) Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters. PLoS ONE 12:e0173765. https://doi.org/10.1371/journal.pone.0173765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805

    Article  PubMed  CAS  Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. Earthscan, London/Washington DC

    Book  Google Scholar 

  • Sustainable Development Solutions Network (2015) Indicators and a monitoring framework for the sustainable development goals launching a data revolution for the SDGs

    Google Scholar 

  • Sutherland WJ, Pullin AS, Dolman PM, Knight TM (2004) The need for evidence-based conservation. Trends Ecol Evol 19:305–308

    Article  PubMed  Google Scholar 

  • Svancara LK, Brannon R, Scott JM, Groves CR, Noss RF, Pressey RL (2005) Policy-driven versus evidence-based conservation: a review of political targets and biological needs. Bioscience 55:989–995

    Article  Google Scholar 

  • Taberlet P, Coissac E, Hajibabaei M, Rieberg LH (2012a) Environmental DNA. Mol Ecol 21:1789–1793

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012b) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x

    Article  PubMed  CAS  Google Scholar 

  • Thatoi H, Behera, Mishra RR (2013) Ecological role and biotechnological potential of mangrove fungi: a review. Mycology 4:54–71

    CAS  Google Scholar 

  • Thomsen PF, Willerslev E (2015) Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18

    Article  Google Scholar 

  • Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP, Orlando L, Willerslev E (2012) Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21:2565–2573

    Article  PubMed  CAS  Google Scholar 

  • Tolu J, Gerber L, Boily J-F, Bindler R (2015) High-throughput characterization of sediment organic matter by pyrolysis–gas chromatography/mass spectrometry and multivariate curve resolution: a promising analytical tool in (paleo)limnology. Anal Chim Acta 880:93–102

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson P (2016) The botany of mangroves. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139946575

    Book  Google Scholar 

  • Trivedi P, Anderson IC, Singh BK (2013) Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol 21:641–651

    Article  PubMed  CAS  Google Scholar 

  • Ullah R, Yasir M, Khan I, Bibi F, Sohrab SS, Al-Ansari A, Al-Abbasi F, Al-Sofyani AA, Daur I, Lee SW, Azhar EI (2017) Comparative bacterial community analysis in relatively pristine and anthropogenically influenced mangrove ecosystems on the Red Sea. Can J Microbiol 63:649–660. https://doi.org/10.1139/cjm-2016-0587

    Article  PubMed  CAS  Google Scholar 

  • Vaiphasa C, Ongsomwang S, Vaiphasa T, Skidmore AK (2005) Tropical mangrove species discrimination using hyperspectral data: a laboratory study. Estuar Coast Shelf Sci 65:371–379

    Article  Google Scholar 

  • Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24:110–117

    Article  PubMed  Google Scholar 

  • van der Werf GR, Morton DC, DeFries RS et al (2009) CO2 emissions from forest loss. Nat Geosci 2:737–738

    Article  CAS  Google Scholar 

  • van Dijk AH, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30:418–426

    Article  PubMed  CAS  Google Scholar 

  • Vancampenhout K, Wouters K, De Vos B, Buurman P, Swennen R, Deckers J (2009) Differences in chemical composition of soil organic matter in natural ecosystems from different climatic regions – a pyrolysis–GC/MS study. Soil Biol Biochem 41:568–579

    Article  CAS  Google Scholar 

  • Viant MR, Sommer U (2013) Mass spectrometry based environmental metabolomics: a primer and review. Metabolomics 9:S144–S158

    Article  CAS  Google Scholar 

  • Vidhya R, Vijayasekaran D, Ahamed Farook M, Jai S, Rohini M, Sinduja A (2014) Improved classification of mangroves health status using hyperspectral remote sensing data. ISPRS Int Archiv Photogramm Remote Sens Spat Inf Sci XL-8:667–670

    Article  Google Scholar 

  • Vo QT, Kuenzer C, Vo QM, Moder F, Oppelt N (2012) Review of valuation methods for mangrove ecosystem services. Ecol Indic 23:431–446

    Article  Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf EV, Allan GJ, DiFazio SP, Potts BM et al (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523

    Article  PubMed  CAS  Google Scholar 

  • Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP, Shapiro B, Bunce M, Wiuf C, Gilichinsky DA, Alan Cooper A (2003) Diverse plant and animal genetic records from holocene and pleistocene sediments. Science 300:791–795

    Article  PubMed  CAS  Google Scholar 

  • Willerslev E, Davison J, Moora M et al (2014) Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506:47–51

    Article  PubMed  CAS  Google Scholar 

  • Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482

    Article  Google Scholar 

  • Wunderlich AC, Pinheiro MAA, Rodrigues AMT (2008) Biologia do caranguejo-uçá, Ucides cordatus (Crustacea: Decapoda: Brachyura), na Baía da Babitonga, Santa Catar Santa Catarina, Brasil. Rev Bras Zool 25:188–198

    Article  Google Scholar 

  • Zhang C, Kovacs JM, Liu Y, Flores-Verdugo F, Flores-de-Santiago F (2014) Separating mangrove species and conditions using laboratory hyperspectral data: a case study of a degraded mangrove forest of the Mexican Pacific. Remote Sens 6:11673–11688

    Article  Google Scholar 

  • Zimmer M (2017) Detritus. In: Jorgensen SE, Fath BD (eds) Encyclopedia of ecology, 2nd edn. Elsevier, Oxford. (in press)

    Google Scholar 

Download references

Acknowledgements

We thank Pierre Taberlet, Eric Coissac and Francesco Ficetola for constructive discussions and insights regarding the application of eDNA metabarcoding to mangrove research and conservation. Many thanks also to Christiane Hassenrück for insights into the application of up-to-date molecular techniques on microbial communities. We are grateful to Stefano Cannicci, Joe (Shing Yip) Lee, Peter K. L. Ng and Ingo Wehrtmann for crab identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Helfer .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: The Biodiversity Procession

Biodiversity (BD)

– degree of variation of the living world, including genetic variation, species variation (community structure) and ecosystem variation .

Biotic Interactions (BI)

– organisms interact with each other, both intraspecifically and interspecifically, e.g., through competition, facilitation, predation, mutualism, parasitism.

Service-Providing Units (SPU)

– units of interacting organisms (individuals, populations, communities) providing the functional basis for services delivered by a functioning ecosystem.

Ecosystem Processes (EP)

– physical, chemical and biological activities or reactions that link organisms and their environment, such as production or decomposition.

Ecosystem Function (EF)

sensu De Groot (1992), EF is defined as “the capacity of natural processes and components to provide goods and services that satisfy human needs directly or indirectly”. This denomination relies strongly on the human perspective, as it will depend on what humans expect ecosystems to deliver, being considered their function.

Ecosystem-Functioning (EFg)

– referring to De Groot et al. (2002), internal ecosystem functioning refers to the maintenance of energy fluxes, nutrient cycling, including food-web interactions. As such, the aggregate of EP warrants the functioning of an ecosystem as entity in delivering functions and ecosystem services.

Ecosystem Services (ES)

– According to the Millennium Ecosystem Assessment (MEA 2005), “ecosystem services are the benefits people obtain from ecosystems”. They can be categorized into: provisioning services such as food- and water-supply; regulating services such as the regulation of floods, droughts, land degradation and diseases; supporting services such as soil formation, and nutrient cycling; and cultural services, such as the offer of recreation, spiritual, religious, and other nonmaterial benefits (see e.g., Vo et al. 2012).

1.2 Appendix II: Glossary

Ancient DNA (aDNA)

sensu Bohmann et al. (2014), it refers to the DNA extracted from samples that have not been intentionally taken for genetic analysis (such as archaeological finds for example). Here we also refer to eDNA that is found in historical samples, such as deep cores of ice or soil/sediment.

Barcoding

sensu stricto it refers to the identification of organisms to the species level using standardized DNA fragments (barcodes). Sensu lato, it refers to the identification of organisms at any taxonomical level using any DNA fragment (Valentini et al. 2009). Barcoding is generally applied to tissue or any DNA trace originating from a single organism while metabarcoding (see below) is applied to DNA samples of mixed composition.

Ecosystem Engineers

– species that are able to create, modify or maintain physical habitat for themselves and other species by significantly changing abiotic environmental conditions (Jones et al. 1994).

Environmental DNA (eDNA)

– DNA that can be recovered from environmental samples (e.g. soil/sediments, water, permafrost, faeces), without prior isolation of specific organisms; as such, eDNA is composed of a mixture of genomic DNA from various organisms, and composed of cellular DNA (from living cells) and degraded extracellular DNA (from dead cells) released upon cell structure destruction (see Taberlet et al. 2012a and references therein).

Foundation Species

– dominant species that, through their considerable abundance and biomass, have a strong effect on other species, by creating conditions and stabilizing fundamental ecosystem processes, and thus community composition and biodiversity (Dayton 1972; Whitham et al. 2006).

Keystone Species

– species that have a strong effect on other species, and thus community composition and biodiversity, by virtue of strong interactions with, or other indirect effects on, other species rather than of their abundance or biomass; keystone species can be rare (Power et al. 1996).

Metabarcoding

simultaneous identification of multiple species or taxa (depending on the taxonomic resolution) from bulk (containing several organisms) or environmental (containing degraded DNA) samples (Taberlet et al. 2012b).

Metabolic Fingerprinting

– MS-based metabolomics approach where “a global snapshot of the metabolism is acquired and compared without performing quantification and chemical identification” (Du and Zeisel 2013).

1.3 Appendix III: Traffic Light for Conservation-Planning

To increase acceptance for strictly protected areas in societies that depend on, and make use of, natural resources, alternative uses and/or alternative sources of resources must be offered. Based on the knowledge gained from the combination of traditional knowledge, social-ecological and socio-economic analyses, ecological studies (including predictive models of future distributions of species and their interactions (SPUs)) and the conservation-omics approach described herein, forecasting the fate and value of particular areas is possible. The outcome of these approaches can be translated into recommendations for spatial conservation prioritization with respect to which areas should be strictly protected (because they are valuable and delicate or sensitive to disturbance and stressors), which areas can bear sustainable use (because they are resistant or resilient to disturbance and stressors), and which areas might be declared available for open use, such as the development of infrastructure or agri- and aquaculture (because they are of little value and/or have low chances of remaining valuable over time).

figure a

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Helfer, V., Zimmer, M. (2018). High-Throughput Techniques As Support for Knowledge-Based Spatial Conservation Prioritization in Mangrove Ecosystems. In: Makowski, C., Finkl, C. (eds) Threats to Mangrove Forests. Coastal Research Library, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-73016-5_24

Download citation

Publish with us

Policies and ethics