Skip to main content

Improving Support Vector Machines Performance Using Local Search

  • Conference paper
  • First Online:
Book cover Machine Learning, Optimization, and Big Data (MOD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10710))

Included in the following conference series:

Abstract

In this paper, we propose a method for optimization of the parameters of a Support Vector Machine which is more accurate than the usually applied grid search method. The method is based on Iterated Local Search, a classic metaheuristic that performs multiple local searches in different parts of the space domain. When the local search arrives at a local optimum, a perturbation step is performed to calculate the starting point of a new local search based on the previously found local optimum. In this way, exploration of the space domain is balanced against wasting time in areas that are not giving good results. We show a preliminary evaluation of our method on a radial-basis kernel and some sample data, showing that it is more accurate than an application of grid search on the same problem. The method is applicable to other kernels and future work should demonstrate to what extent our Iterated Local Search based method outperforms the standard grid search method over other heterogeneous datasets from different domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that automatic configuration for algorithms is the same problem faced when doing hyper-parameter tuning in machine learning; it is just another wording.

  2. 2.

    https://cran.r-project.org/web/packages/e1071/index.html.

References

  1. Aarts, E., Korst, J., Michiels, W.: Simulated annealing. Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pp. 187–210 (2005)

    Google Scholar 

  2. Alpaydin, E.: Introduction to Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  3. Anaissi, A., Goyal, M., Catchpoole, D.R., Braytee, A., Kennedy, P.J.: Ensemble feature learning of genomic data using support vector machine. PLoS One 11(6), 1 June 2016, Article Number e0157330 (2016)

    Google Scholar 

  4. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-race algorithm: sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75514-2_9

    Google Scholar 

  5. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Ceylan, O., Taşkn, G.: SVM parameter selection based on harmony search with an application to hyperspectral image classification. In: 24th Signal Processing and Communication Application Conference (SIU), pp. 657–660 (2016)

    Google Scholar 

  7. Cherkassky, V., Ma, Y.: Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17(1), 113–126 (2004)

    MATH  Google Scholar 

  8. Conca, P., Stracquadanio, G., Nicosia, G.: Automatic tuning of algorithms through sensitivity minimization. In: Pardalos, P., Pavone, M., Farinella, G.M., Cutello, V. (eds.) MOD 2015. LNCS, vol. 9432, pp. 14–25. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27926-8_2

    Google Scholar 

  9. Cortes, C., Vapnik, V.N.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  10. Gatos, I., Tsantis, S., Spiliopoulos, S., Karnabatidis, D., Theotokas, I., Zoumpoulis, P., Loupas, T., Hazle, J.D., Kagadis, G.C.: A new computer aided diagnosis system for evaluation of chronic liver disease with ultrasound shear wave elastography imaging. Med. Phys. 43(3), 1428–1436 (2016)

    Google Scholar 

  11. Hansen, P., Mladenović, N., Moreno-Pérez, J.A.: Variable neighbourhood search: methods and applications. Ann. Oper. Res. 175(1), 367–407 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Google Scholar 

  13. Hutter, F., Stützle, T., Leyton-Brown, K., Hoos, H.H.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36(1), 267–306 (2009)

    MATH  Google Scholar 

  14. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026683

    Google Scholar 

  15. Kecman, V.: Learning and Soft Computing. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  16. Keerthi, S.: Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Trans. Neural Networks 13(5), 1225–1229 (2002)

    Google Scholar 

  17. Kwok, J.T., Tsang, I.W.: Linear dependency between \(\epsilon \) and the input noise in \(\epsilon \)-support vector regression. IEEE Trans. Neural Networks 14(3), 544–553 (2003)

    Google Scholar 

  18. Lameski, P., Zdravevski, E., Mingov, R., Kulakov, A.: SVM parameter tuning with grid search and its impact on reduction of model over-fitting. In: Yao, Y., Hu, Q., Yu, H., Grzymala-Busse, J.W. (eds.) RSFDGrC 2015. LNCS (LNAI), vol. 9437, pp. 464–474. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25783-9_41

    Google Scholar 

  19. López-Ibáñez, M., Dubois-Lacoste, J., Pérez-Cáceres, L., Birattari, M., Stützle, T.: The irace package: Iterated racing for automatic algorithm configuration. Operat. Res. Perspect. 3, 43–58 (2016)

    MathSciNet  Google Scholar 

  20. Lourenço, H.R.: Job-shop scheduling: computational study of local search and large-step optimization methods. Eur. J. Oper. Res. 83(2), 347–364 (1995)

    MATH  Google Scholar 

  21. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 363–397. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_12

    Google Scholar 

  22. Mattera, D., Haykin, S.: Support vector machines for dynamic reconstruction of a chaotic system. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods, pp. 211–241. MIT Press, Cambridge (1999)

    Google Scholar 

  23. McLachlan, G.J., Do, K.-A., Ambroise, C.: Analyzing Microarray Gene Expression Data. Wiley, New York (2004)

    MATH  Google Scholar 

  24. Melvin, I., Ie, E., Kuang, R., Weston, J., Stafford, W.N.N., Leslie, C.: SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition. BMC Bioinform. 8(Suppl. 4), S2 (2007)

    Google Scholar 

  25. Osuna, E., Freund, R., Girosit, F.: Training support vector machines: an application to face detection. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR 1997), pp. 130–137. IEEE Computer Society (1997)

    Google Scholar 

  26. Pardalos, P.M., Resende, M.G.C.: Handbook of Applied Optimization. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  27. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York (2004)

    MATH  Google Scholar 

  28. Sherin, B.M., Supriya, M.H.: Selection and parameter optimization of SVM kernel function for underwater target classification. In: 2015 IEEE Underwater Technology (UT), pp. 1–5 (2015)

    Google Scholar 

  29. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (2000)

    MATH  Google Scholar 

  30. Vos, P.C., Hambrock, T., Hulsbergen van de Kaa, C.A., Futterer, J.J., Barentsz, J.O., Huisman, H.J.: Computerized analysis of prostate lesions in the peripheral zone using dynamic contrast enhanced MRI. Med. Phys. 35(3), 888–899 (2008)

    Google Scholar 

  31. Yang, C., Ding, L., Liao, S.: Parameter tuning via kernel matrix approximation for support vector machine. J. Comput. 7(8), 2047–2054 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Consoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Consoli, S., Kustra, J., Vos, P., Hendriks, M., Mavroeidis, D. (2018). Improving Support Vector Machines Performance Using Local Search. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R. (eds) Machine Learning, Optimization, and Big Data. MOD 2017. Lecture Notes in Computer Science(), vol 10710. Springer, Cham. https://doi.org/10.1007/978-3-319-72926-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72926-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72925-1

  • Online ISBN: 978-3-319-72926-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics