Skip to main content

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 19))

Abstract

Functional electrical stimulation has been applied for more than half a century to restore and support gait in patients after stroke or after spinal cord injury. Most prevalent are assistive systems for the correction of drop foot in stroke patients using either surface or implanted stimulation technology. For therapeutical use in clinical environments, multi-channel FES systems are often employed in combination with robotic devices or partial body weight support during walking on a treadmill. The restoration of gait in spinal cord injured people is also an ongoing research topic. New implantable stimulation systems and hybrid approaches that combine powered exoskeletons and FES are under investigation. Inertial sensor technology, electromyographic sensing, and advanced feedback control are predicted to be key technologies of future FES systems that allow a more patient and situation-specific gait support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Truelsen T, Piechowski-Jozwiak B, Bonita R, Mathers C, Bogousslavsky J, Boysen G. Stroke incidence and prevalence in Europe: a review of available data. Eur J Neurol. 2006;13(6):581–98.

    Article  Google Scholar 

  2. Mackay J, Mensah GA, Mendis S, Greenlund K (2004) The atlas of heart disease and stroke. World Health Organization.

    Google Scholar 

  3. Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke study. Arch Phys Med Rehabil. 1995;76(1):27–32.

    Article  Google Scholar 

  4. Wade DT, Wood VA, Heller A, Maggs J, Hewer RL. Walking after stroke. Measurement and recovery over the first 3 months. Scand J Rehabil Med. 1987;19(1):25–30.

    Google Scholar 

  5. Robinson CA, Shumway-Cook A, Matsuda PN, Ciol MA. Understanding physical factors associated with participation in community ambulation following stroke. Disabil Rehabil. 2011;33(12):1033–42.

    Article  Google Scholar 

  6. Hyndman D, Ashburn A, Stack E. Fall events among people with stroke living in the community: circumstances of falls and characteristics of fallers. Arch Phys Med Rehabil. 2002;83(2):165–70.

    Article  Google Scholar 

  7. Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG. Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol. 2014;6:309–31.

    Google Scholar 

  8. Gandolla M, Ferrante S, Molteni F, Guanziroli E, Frattini T, Martegani A, Ferrigno G, Friston K, Pedrocchi A, Ward NS. Re-thinking the role of motor cortex: context-sensitive motor outputs? NeuroImage. 2014;91:366–74.

    Article  Google Scholar 

  9. Kafri M, Laufer Y. Therapeutic effects of functional electrical stimulation on gait in individuals post-stroke. Ann Biomed Eng. 2015;43(2):451–66. https://doi.org/10.1007/s10439-014-1148-8.

    Article  Google Scholar 

  10. Preece SJ, Kenney LP, Major MJ, Dias T, Lay E, Fernandes BT. Automatic identification of gait events using an instrumented sock. J Neuroengineering Rehabil. 2011;8(1):1.

    Article  Google Scholar 

  11. Chia Bejarano N, Ambrosini E, Pedrocchi A, Ferrigno G, Monticone M, Ferrante S. A novel adaptive, real-time algorithm to detect gait events from wearable sensors. IEEE Trans Neural Syst Rehabil Eng. 2015;23(3):413–22. https://doi.org/10.1109/TNSRE.2014.2337914.

    Article  Google Scholar 

  12. Rueterbories J, Spaich EG, Andersen OK. Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations. Med Eng Phys. 2014;36(4):502–8.

    Article  Google Scholar 

  13. Seel T, Escobar VC, Raisch J, Schauer T. Online gait phase detection with automatic adaption to gait velocity changes using accelerometers and gyroscopes. Biomed Eng/Biomed Techik. 2014;59(s1):S795–8. https://doi.org/10.1515/bmt-2014-5011.

    Google Scholar 

  14. Seel T, Werner C, Raisch J, Schauer T. Iterative learning control of a drop foot neuroprosthesis—generating physiological foot motion in paretic gait by automatic feedback control. Control Eng Pract. 2016;48:87–97.

    Article  Google Scholar 

  15. Sinkjaer T, Haugland M, Inmann A, Hansen M, Nielsen KD. Biopotentials as command and feedback signals in functional electrical stimulation systems. Med Eng Phys. 2003;25(1):29–40.

    Article  Google Scholar 

  16. Taborri J, Palermo E, Rossi S, Cappa P. Gait partitioning methods: a systematic review. Sensors 16(1):66. http://doi.org/10.3390/s16010066.

  17. Nahrstaedt H, Schauer T, Shalaby R, Hesse S, Raisch J. Automatic control of a drop foot stimulator based on angle measurement using bioimpedance. Artif Organs. 2008;32(8):649–54.

    Article  Google Scholar 

  18. Seel T, Raisch J, Schauer T. IMU-based joint angle measurement for gait analysis. Sensors. 2014;14(4):6891–909. https://doi.org/10.3390/s140406891.

    Article  Google Scholar 

  19. Graurock D, Schauer T, Seel T. Automatic pairing of inertial sensors to lower limb segments—a plugand-play approach. Current Direct Biomed Eng. 2016;2:715–8. https://doi.org/10.1515/cdbme-2016-01552364-5504.

  20. Merletti R, Knaflitz M, De Luca CJ. Electrically evoked myoelectric signals. Crit Rev Biomed Eng. 1992;19(4):293–340.

    Google Scholar 

  21. Klauer C, Raisch J, Schauer T. Linearisation of electrically stimulated muscles by feedback control of the muscular recruitment measured by evoked EMG. In: 2012 17th international conference on IEEE, Methods and Models in Automation and Robotics (MMAR); 2012. p. 108–13.

    Google Scholar 

  22. Klauer C, Ferrante S, Ambrosini E, Shiri U, Dahne F, Schmehl I, Pedrocchi A, Schauer T. A patient-controlled functional electrical stimulation system for arm weight relief. Med Eng Phys. 2016;38(11):1232–43.

    Article  Google Scholar 

  23. De Luca CF, Knaflitz M. Surface electromyography, what’s new?. Turin, Italy: CLUT Publishers; 1992.

    Google Scholar 

  24. Ambrosini E, Ferrante S, Schauer T, Klauer C, Gaffuri M, Ferrigno G, Pedrocchi A. A myocontrolled neuroprosthesis integrated with a passive exoskeleton to support upper limb activities. J Electromyogr Kinesiol. 2014;24(2):307–17. https://doi.org/10.1016/j.jelekin.2014.01.006.

    Article  Google Scholar 

  25. Shalaby R, Schauer T, Liedecke W, Raisch J. Amplifier design for EMG recording from stimulation electrodes during functional electrical stimulation leg cycling ergometry. Biomed Technik Biomed Eng. 2011;56(1):23–33.

    Article  Google Scholar 

  26. Heller BW, Clarke AJ, Good TR, Healey TJ, Nair S, Pratt EJ, Reeves ML, van der Meulen JM, Barker AT. Automated setup of functional electrical stimulation for drop foot using a novel 64 channel prototype stimulator and electrode array: results from a gait-lab based study. Med Eng Phys. 2013;35(1):74–81. https://doi.org/10.1016/j.medengphy.2012.03.012.

    Article  Google Scholar 

  27. Malesevic J, Malesevic N, Bijelic G, Keller T, Konstantinovic L. Multi-pad stimulation device for treating foot drop: Case study. In: Annual conference of the Functional Electrical Stimulation Society (IFESS), IEEE, IEEE; 2014. p. 1–4.

    Google Scholar 

  28. Prenton S, Kenney LP, Stapleton C, Cooper G, Reeves ML, Heller BW, Sobuh M, Barker AT, Healey J, Good TR, et al. Feasibility study of a take-home array-based functional electrical stimulation system with automated setup for current functional electrical stimulation users with foot-drop. Arch Phys Med Rehabil. 2014;95(10):1870–7.

    Article  Google Scholar 

  29. Valtin M, Seel T, Raisch J, Schauer T. Iterative learning control of drop foot stimulation with array electrodes for selective muscle activation. In: Proceedings of the 19th IFAC World Congress; 2014. p. 6587–92.

    Google Scholar 

  30. Cooper G, Barker AT, Heller BW, Good T, Kenney LP, Howard D. The use of hydrogel as an electrode-skin interface for electrode array FES applications. Med Eng Phys. 2011;33(8):967–72.

    Article  Google Scholar 

  31. Sayenko DG, Nguyen R, Popovic MR, Masani K. Reducing muscle fatigue during transcutaneous neuromuscular electrical stimulation by spatially and sequentially distributing electrical stimulation sources. Eur J Appl Physiol. 2014;114(4):793–804.

    Article  Google Scholar 

  32. Veltink PH, Slycke P, Hemssems J, Buschman R, Bultstra G, Hermens H. Three dimensional inertial sensing of foot movements for automatic tuning of a two-channel implantable drop-foot stimulator. Med Eng Phys. 2003;25(1):21–8.

    Article  Google Scholar 

  33. Seel T, Werner C, Schauer T. The adaptive drop foot stimulator—multivariable learning control of foot pitch and roll motion in paretic gait. Med Eng Phys. 2016;38(11):1205–13.

    Article  Google Scholar 

  34. Liberson W, Holmquest H, Scott M. Functional electrotherapy: stimulation of the common peroneal nerve synchronised with the swing phase of gait of hemiplegic subjects. Arch Phys Med Rehabil. 1961;42:202–5.

    Google Scholar 

  35. Burridge J, Taylor P, Hagan S, Wood DE, Swain ID. The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin Rehabil. 1997;11(3):201–10.

    Article  Google Scholar 

  36. Lyons GM, Sinkjaer T, Burridge JH, Wilcox DJ. A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans Neural Syst Rehabil Eng. 2002;10(4):260–79.

    Article  Google Scholar 

  37. Melo PL, Silva MT, Martins JM, Newman DJ. Technical developments of functional electrical stimulation to correct drop foot: sensing, actuation and control strategies. Clin Biomech. 2015;30(2):101–13. https://doi.org/10.1016/j.clinbiomech.2014.11.007.

    Article  Google Scholar 

  38. Hausdorff JM, Ring H. Effects of a new radio frequency-controlled neuroprosthesis on gait symmetry and rhythmicity in patients with chronic hemiparesis. Am J Phys Med Rehabil. 2008;87(1):4–13. https://doi.org/10.1097/PHM.0b013e31815e6680.

    Article  Google Scholar 

  39. Kottink AIR, Oostendorp LJM, Buurke JH, Nene AV, Hermens HJ. IJzerman MJ. The orthotic effect of functional electrical stimulation on the improvement of walking in stroke patients with a dropped foot: a systematic review. Artif Organs. 2004;28(6):577–86. https://doi.org/10.1111/j.1525-1594.2004.07310.x.

    Article  Google Scholar 

  40. Kottink AIR, Hermens HJ, Nene AV, Tenniglo MJ, Groothuis-Oudshoorn CG. IJzerman MJ. Therapeutic effect of an implantable peroneal nerve stimulator in subjects with chronic stroke and footdrop: a randomized controlled trial. Phys Ther. 2008;88(4):437–48. https://doi.org/10.2522/ptj.20070035.

    Article  Google Scholar 

  41. Martin KD, Polanski W, Schackert G, Sobottka SB. New therapeutic option for drop foot with the ActiGait peroneal nerve stimulator—a technical note. World Neurosurg. 2015;84(6):2037–42. https://doi.org/10.1016/j.wneu.2015.06.074.

    Article  Google Scholar 

  42. Ring H, Treger I, Gruendlinger L, Hausdorff JM. Neuroprosthesis for foot-drop compared with an ankle-foot orthosis: effects on postural control during walking. J Stroke Cerebrovasc Dis. 2009;18(1):41–7.

    Article  Google Scholar 

  43. Schiemanck S, Berenpas F, van Swigchem R, van den Munckhof P, de Vries J, Beelen A, Nollet F, Geurts AC. Effects of implantable peroneal nerve stimulation on gait quality, energy expenditure, participation and user satisfaction in patients with post-stroke drop foot using an ankle-foot orthosis. Restorative Neurol Neurosci. 2015;33(6):795–807. https://doi.org/10.3233/rnn-150501.

    Article  Google Scholar 

  44. Sheffler LR, Hennessey MT, Naples GG, Chae J. Peroneal nerve stimulation versus an ankle foot orthosis for correction of footdrop in stroke: impact on functional ambulation. Neurorehabilitation Neural Repair. 2006;20(3):355–60. https://doi.org/10.1177/1545968306287925.

    Article  Google Scholar 

  45. Stein RB, Everaert DG, Thompson AK, Chong SL, Whittaker M, Robertson J, Kuether G. Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabil Neural Repair. 2010;24(2):152–67. https://doi.org/10.1177/1545968309347681.

    Article  Google Scholar 

  46. van Swigchem R, Weerdesteyn V, van Duijnhoven HJ, den Boer J, Beems T, Geurts AC. Near-normal gait pattern with peroneal electrical stimulation as a neuroprosthesis in the chronic phase of stroke: a case report. Arch Phys Med Rehabil. 2011;92(2):320–4.

    Article  Google Scholar 

  47. Taylor P, Humphreys L, Swain I. The long-term cost-effectiveness of the use of functional electrical stimulation for the correction of dropped foot due to upper motor neuron lesion. J Rehabil Med. 2013;45(2):154–60. https://doi.org/10.2340/16501977-1090.

    Article  Google Scholar 

  48. Taylor PN, Burridge JH, Dunkerley AL, Wood DE, Norton JA, Singleton C, Swain ID. Clinical use of the odstock dropped foot stimulator: Its effect on the speed and effort of walking. Arch Phys Med Rehabil. 1999;80(12):1577–83. https://doi.org/10.1016/S0003-9993(99)90333-7.

    Article  Google Scholar 

  49. Wilder RP, Wind TC, Jones EV, Crider BE, Edlich RF. Functional electrical stimulation for a dropped foot. J Long Term Eff Med Implants. 2002;12(3):149–59.

    Google Scholar 

  50. Bulley C, Shiels J, Wilkie K, Salisbury L. User experiences, preferences and choices relating to functional electrical stimulation and ankle foot orthoses for foot-drop after stroke. Physiotherapy. 2011;97(3):226–33. https://doi.org/10.1016/j.physio.2010.11.001.

    Article  Google Scholar 

  51. van Swigchem R, Vloothuis J, den Boer J, Weerdesteyn V, Geurts AC. Is transcutaneous peroneal stimulation beneficial to patients with chronic stroke using an ankle-foot orthosis? A within-subjects study of patients’ satisfaction, walking speed and physical activity level. J Rehabil Med. 2010;42(2):117–21.

    Article  Google Scholar 

  52. Weber DJ, Stein RB, Chan KM, Loeb G, Richmond F, Rolf R, James K, Chong SL. BIONic WalkAide for correcting foot drop. IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc. 2005;13(2):242–6. https://doi.org/10.1109/TNSRE.2005.847385.

    Article  Google Scholar 

  53. Kenney L, Bultstra G, Buschman R, Taylor P, Mann G, Hermens H, Holsheimer J, Nene A, Tenniglo M, van der Aa H, Hobby J. An implantable two channel drop foot stimulator: initial clinical results. Artif Organs. 2002;26(3):267–70.

    Article  Google Scholar 

  54. Burridge JH, Haugland M, Larsen B, Svaneborg N, Iversen HK, Christensen PB, Pickering RM, Sinkjaer T. Patients’ perceptions of the benefits and problems of using the ActiGait implanted drop-foot stimulator. J Rehabil Med. 2008;40(10):873–5. https://doi.org/10.2340/16501977-0268.

    Article  Google Scholar 

  55. Byrne CA, O’Keeffe DT, Donnelly AE, Lyons GM. Effect of walking speed changes on tibialis anterior EMG during healthy gait for FES envelope design in drop foot correction. J Electromyogr Kinesiol. 2007;17(5):605–16. https://doi.org/10.1016/j.jelekin.2006.07.008.

    Article  Google Scholar 

  56. Chen M, Wu B, Lou X, Zhao T, Li J, Xu Z, Hu X, Zheng X. A self- adaptive foot drop corrector using functional electrical stimulation (FES) modulated by tibialis anterior electromyography (EMG) dataset. Med Eng Phys. 2013;35(2):195–204. https://doi.org/10.1016/j.medengphy.2012.04.016.

    Article  Google Scholar 

  57. O’Keeffe DT, Lyons GM. A versatile drop foot stimulator for research applications. Med Eng Phys. 2002;24(3):237–42.

    Article  MathSciNet  Google Scholar 

  58. Chen WL, Chen SC, Chen CC, Chou CH, Shih YY, Chen YL, Kuo TS. Patient-driven loop control for ambulation function restoration in a non-invasive functional electrical stimulation system. Dis Rehabil. 2010;32(1):65–71. https://doi.org/10.3109/09638280903026564.

    Article  Google Scholar 

  59. Thorsen R, Ferrarin M, Veltink P. Enhancement of isometric ankle dorsiflex- ion by automyoelectrically controlled functional electrical stimulation on subjects with upper motor neuron lesions. Neuromodulation. 2002;5(4):256–63.

    Article  Google Scholar 

  60. Yeom H, Chang YH. Autogenic EMG-controlled functional electrical stimulation for ankle dorsiflexion control. J Neurosci Methods. 2010;193(1):118–25. https://doi.org/10.1016/j.jneumeth.2010.08.011.

    Article  Google Scholar 

  61. Kesar TM, Perumal R, Jancosko A, Reisman DS, Rudolph KS, Higginson JS, Binder-Macleod SA. Novel patterns of functional electrical stimulation have an immediate effect on dorsiflexor muscle function during gait for people poststroke. Phys Ther. 2010;90(1):55–66. https://doi.org/10.2522/ptj.20090140.

    Article  Google Scholar 

  62. Teasell RW, Bhogal SK, Foley NC, Speechley MR. Gait retraining post stroke. Topics Stroke Rehabil. 2003;10(2):34–65. https://doi.org/10.1310/UDXE-MJFF-53V2-EAP0.

    Article  Google Scholar 

  63. Robbins SM, Houghton PE, Woodbury MG, Brown JL. The therapeutic effect of functional and transcutaneous electric stimulation on improving gait speed in stroke patients: a meta-analysis. Arch Phys Med Rehabil. 2006;87(6):853–9.

    Article  Google Scholar 

  64. Daly JJ, Zimbelman J, Roenigk KL, McCabe JP, Rogers JM, Butler K, Burdsall R, Holcomb JP, Marsolais EB, Ruff RL. Recovery of coordinated gait: randomized controlled stroke trial of functional electrical stimulation (FES) versus no FES, with weight-supported treadmill and over-ground training. Neurorehabilitation and Neural Repair. 2011;25(7):588–96. https://doi.org/10.1177/1545968311400092.

    Article  Google Scholar 

  65. Salisbury L, Shiels J, Todd I, Dennis M. A feasibility study to investigate the clinical application of functional electrical stimulation (FES), for dropped foot, during the sub-acute phase of stroke—a randomized controlled trial. Physiotherapy Theor Pract. 2013;29(1):31–40. https://doi.org/10.3109/09593985.2012.674087.

    Article  Google Scholar 

  66. Bogataj U, Gros N, Kljajic M, Acimovic R, Malezic M. The rehabilitation of gait in patients with hemiplegia: a comparison between conventional therapy and multichannel functional electrical stimulation therapy. Phys Ther. 1995;75(6):490–502.

    Article  Google Scholar 

  67. Cho MK, Kim JH, Chung Y, Hwang S. Treadmill gait training combined with functional electrical stimulation on hip abductor and ankle dorsiflexor muscles for chronic hemiparesis. Gait Posture. 2015;42(1):73–8.

    Article  Google Scholar 

  68. Hesse S, Malezic M, Schaffrin A, Mauritz K. Restoration of gait by combined treadmill training and multichannel electrical stimulation in non-ambulatory hemiparetic patients. Scand J Rehabil Med. 1995;27(4):199–204.

    Google Scholar 

  69. Kesar TM, Reisman DS, Perumal R, Jancosko AM, Higginson JS, Rudolph KS, Binder-Macleod SA. Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait. Gait Posture. 2011;33(2):309–13. https://doi.org/10.1016/j.gaitpost.2010.11.019.

    Article  Google Scholar 

  70. Lindquist AR, Prado CL, Barros RM, Mattioli R, Da Costa PHL, Salvini TF. Gait training combining partial body-weight support, a treadmill, and functional electrical stimulation: effects on poststroke gait. Phys Ther. 2007;87(9):1144–54.

    Article  Google Scholar 

  71. Krishnamoorthy V, Hsu WL, Kesar TM, Benoit DL, Banala SK, Perumal R, Sangwan V, Binder-Macleod SA, Agrawal SK, Scholz JP. Gait training after stroke: a pilot study combining a gravity-balanced orthosis, functional electrical stimulation, and visual feedback. J Neurol Phys Ther JNPT. 2008;32(4):192–202. https://doi.org/10.1097/NPT.0b013e31818e8fc2.

    Article  Google Scholar 

  72. Tong RK, Ng MF, Li LS. Effectiveness of gait training using an electromechanical gait trainer, with and without functional electric stimulation, in subacute stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2006;87(10):1298–304. https://doi.org/10.1016/j.apmr.2006.06.016.

    Article  Google Scholar 

  73. Dohring ME, Daly JJ. Automatic synchronization of functional electrical stimulation and robotic assisted treadmill training. IEEE Trans Neural Syst Rehabil Eng. 2008;16(3):310–3. https://doi.org/10.1109/TNSRE.2008.920081.

    Article  Google Scholar 

  74. McCabe JP, Dohring ME, Marsolais EB, Rogers J, Burdsall R, Roenigk K, Pundik S, Daly JJ. Feasibility of combining gait robot and multichannel functional electrical stimulation with intramuscular electrodes. J Rehabil Res Dev. 2008;45(7):997–1006.

    Article  Google Scholar 

  75. Ambrosini E, Ferrante S, Pedrocchi A, Ferrigno G, Molteni F. Cycling induced by electrical stimulation improves motor recovery in postacute hemiparetic patients a randomized controlled trial. Stroke. 2011;42(4):1068–73.

    Article  Google Scholar 

  76. Yan T, Hui-Chan CW, Li LS. Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: A randomized placebo-controlled trial. Stroke. 2005;36(1):80–5.

    Article  Google Scholar 

  77. Jovicic NS, Saranovac LV, Popovic DB. Wireless distributed functional electrical stimulation system. J Neuroengineering Rehabil. 2012;9:54.

    Google Scholar 

  78. Mecheraoui CA, Swain I, Cobb J. A distributed three-channel wireless Functional electrical stimulation system for automated triggering of stimulation to enable coordinated task execution by patients with neurological disease. Biomed Signal Proc Control. 2013;8(2):176–83. https://doi.org/10.1016/j.bspc.2012.08.006.

    Article  Google Scholar 

  79. Kralj A, Bajd T, Turk R. Enhancement of gait restoration in spinal injured patients by functional electrical stimulation. Clin Orthop Relat Res. 1988;233:34–43.

    Google Scholar 

  80. Graupe D, Kohn KH. Functional neuromuscular stimulator for short-distance ambulation by certain thoracic-level spinal-cord-injured paraplegics. Surg Neurol. 1998;50(3):202–7.

    Article  Google Scholar 

  81. Graupe D, Davis R, Kordylewski H, Kohn KH. Ambulation by traumatic t4–12 paraplegics using functional neuromuscular stimulation. Crit Rev Neurosurg. 1998;8(4):221–31.

    Article  Google Scholar 

  82. Braz GP, Russold M, Davis GM. Functional electrical stimulation control of standing and stepping after spinal cord injury: a review of technical characteristics. Neuromodulation J Int Neuromodulation Soc. 2009;12(3):180–90. https://doi.org/10.1111/j.15251403.2009.00213.x.

    Article  Google Scholar 

  83. Guiraud D, Stieglitz T, Koch KP, Divoux JL, Rabischong P. An implantable neuroprosthesis for standing and walking in paraplegia: 5-year patient follow-up. J Neural Eng. 2006;3(4):268–75. https://doi.org/10.1088/1741-2560/3/4/003.

    Article  Google Scholar 

  84. Guiraud D, Coste CA, Benoussaad M, Fattal C. Implanted functional electrical stimulation: case report of a paraplegic patient with complete sci after 9 years. J. Neuroengineering Rehabil. 2014;11:15.

    Google Scholar 

  85. Kobetic R, Triolo RJ, Uhlir JP, Bieri C, Wibowo M, Polando G, Marsolais EB, Davis JA Jr, Ferguson KA. Implanted functional electrical stimulation system for mobility in paraplegia: a follow-up case report. IEEE Trans Rehabil Eng. 1999;7(4):390–8.

    Article  Google Scholar 

  86. von Wild K, Rabischong P, Brunelli G, Benichou M, Krishnan K. Computer added locomotion by implanted electrical stimulation in paraplegic patients (SUAW). Acta Neurochir Suppl. 2002;79:99–104.

    Google Scholar 

  87. Hardin E, Kobetic R, Murray L, Corado-Ahmed M, Pinault G, Sakai J, Bailey SN, Ho C, Triolo RJ. Walking after incomplete spinal cord injury using an implanted FES system: a case report. J Rehabil Res Dev. 2007;44(3):333–46.

    Article  Google Scholar 

  88. Dutta A, Kobetic R, Triolo RJ. Ambulation after incomplete spinal cord injury with EMG-triggered functional electrical stimulation. IEEE Trans Bio-Med Eng. 2008;55(2 Pt 1):791–4. https://doi.org/10.1109/TBME.2007.902225.

    Article  Google Scholar 

  89. Durfee WK, Rivard A. Design and simulation of a pneumatic, stored- energy, hybrid orthosis for gait restoration. J Biomech Eng. 2005;127(6):1014–9.

    Article  Google Scholar 

  90. Kobetic R, To CS, Schnellenberger JR, Audu ML, Bulea TC, Gaudio R, Pinault G, Tashman S, Triolo RJ. Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury. J Rehabil Res Dev. 2009;46(3):447–62.

    Article  Google Scholar 

  91. del-Ama AJ, Koutsou AD, Moreno JC, de-los Reyes A, Gil-Agudo A, Pons JL. Review of hybrid exoskeletons to restore gait following spinal cord injury. J Rehabil Res Dev. 2012;49(4):497–514.

    Google Scholar 

  92. Ha KH, Murray SA, Goldfarb M. An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia. IEEE Trans Neural Syst Rehabil Eng. 2016;24(4):455–66. https://doi.org/10.1109/TNSRE.2015.2421052.

    Article  Google Scholar 

  93. del-Ama AJ, Gil-Agudo A, Bravo-Esteban E, Perez-Nombela S, Pons JL, Moreno JC. Hybrid therapy of walking with kinesis overground robot for persons with incomplete spinal cord injury: a feasibility study. Robot Auton Syst. 2015;73:44–58.

    Google Scholar 

  94. Del-Ama AJ, Gil-Agudo A, Pons JL, Moreno JC. Hybrid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study. Frontiers Hum Neurosci. 2014;8:298.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schauer, T., Seel, T. (2018). Gait Training by FES. In: Sandrini, G., Homberg, V., Saltuari, L., Smania, N., Pedrocchi, A. (eds) Advanced Technologies for the Rehabilitation of Gait and Balance Disorders. Biosystems & Biorobotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-72736-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72736-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72735-6

  • Online ISBN: 978-3-319-72736-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics