Skip to main content

The Calorimetric Glass Transition in a Wide Range of Cooling Rates and Frequencies

  • Chapter
  • First Online:
The Scaling of Relaxation Processes

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

The glass transition at common laboratory scan rates (K/min) has been a highly debated topic for the last decade. The continuous increase in the variety of available glass-forming materials and methods to characterize them maintains a research interest, as well as opens new perspective applications. In parallel, many different theoretical methods aimed at describing the glass transition have been proposed in the last 70 years. A general theory has yet to be developed and carefully tested. In the present chapter, we describe the results of theoretical and experimental investigations of the glass transition of a model polymer—polystyrene . State-of-the-art scanning calorimetry allows for measuring the temperature dependence of the isobaric heat capacity in an exceedingly wide range of cooling rates. Besides providing novel data on the glass transition of polymers at fast cooling rates, this allows for one to test the capabilities of convenient theoretical methods in modelling the kinetics of the glass transition under very different vitrifying conditions. The glass transition of atactic polystyrene was investigated at different cooling rates in the range of qc = 10−6–104 K/s. Dependencies of the glass transition temperature, Tg, and the shape of heat capacity, Cp, curves on qc were obtained. Furthermore, we have applied a number of different theoretical methods to test their capability to model the glass transition kinetics for such a wide range of control parameter qc. The list of investigated theoretical methods consists of the Tool–Narayanaswamy–Moynihan approach , Adam–Gibbs theory , an irreversible thermodynamics -based approach and some of their modern modifications. As a first step, we show that most of these methods are capable of fitting the cooling rate dependencies of the glass transition parameters (Tg and others). The model parameters in this case are close to literature data. Furthermore, we show that while fitting the Cp(T) curves for a single cooling–heating experiment bears acceptable results, the parameters have to be changed with respect to qc, with their difference becoming significant for very slow or very fast cooling rates. Thus, none of the methods can be applied successfully to model and predict the kinetics of glass transition in a wide range of q. We compare the results of different methods and propose an expression for the relaxation time dependence on model parameters within an irreversible thermodynamics approach. Thus, we extend the experimental results for polystyrene and state that the presently applied theoretical methods are incapable of accurately describing the heat capacity temperature curves Cp(T) for a wide range of cooling/heating rates, q. The present methods and expressions for relaxation time τ do not account for a certain additional effect spanning over different rates of temperature change, which has yet to be discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5PPE:

5-phenyl-4-ether

ATHAS:

Advanced thermal analysis system (data bank)

AC:

Alternating current (calorimetry)

AG:

Adam–Gibbs (theory)

CRR:

Cooperatively rearranging regions

DFSC:

Differential fast-scanning calorimetry

DSC:

Differential scanning calorimetry

FSC:

Fast-scanning (chip) calorimetry

GS:

Gutzow–Schmelzer (method)

KAHR:

Kovacs–Aklonis–Hutchinson–Ramos (method)

PS:

Polystyrene

TNM:

Tool–Narayanaswamy–Moynihan (method)

TMDSC:

Temperature-modulated differential scanning calorimetry

VFT:

Vogel–Fulcher–Tammann (law)

References

  1. Stillinger FH, Debenedetti PG (2013) Glass Transition Thermodynamics and Kinetics. Annu Rev Condens Matter Phys 4:263–285. https://doi.org/10.1146/annurev-conmatphys-030212-184329

    Article  CAS  Google Scholar 

  2. Gutzow IS, Schmelzer JWP (2013) The vitreous state: thermodynamics, structure, rheology, and crystallization. Springer, Berlin. https://doi.org/10.1007/978-3-642-34633-0

    Book  Google Scholar 

  3. Schmelzer JWP, Gutzow IS, Mazurin OV, Priven AI, Todorova SV, Petroff BP (2011) Glasses and the glass transition. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/9783527636532

    Book  Google Scholar 

  4. Cavagna A (2009) Supercooled liquids for pedestrians. Phys Rep 476:51–124. https://doi.org/10.1016/j.physrep.2009.03.003

    Article  CAS  Google Scholar 

  5. Lubchenko V (2015) Theory of the structural glass transition: a pedagogical review. Adv Phys 64:283–443. https://doi.org/10.1080/00018732.2015.1057979

    Article  CAS  Google Scholar 

  6. Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MKs. Rev Sci Instrum 78 https://doi.org/10.1063/1.2751411

  7. Schawe JEK (2015) Measurement of the thermal glass transition of polystyrene in a cooling rate range of more than six decades. Thermochim Acta 603:128–134. https://doi.org/10.1016/j.tca.2014.05.025

    Article  CAS  Google Scholar 

  8. Tropin TV, Schulz G, Schmelzer JWP, Schick C (2015) Heat capacity measurements and modeling of polystyrene glass transition in a wide range of cooling rates. J Non Cryst Solids 409:63–75. https://doi.org/10.1016/j.jnoncrysol.2014.11.001

    Article  CAS  Google Scholar 

  9. Narayanaswamy OS (1971) A model of structural relaxation in glass. J Am Ceram Soc 54:491–498. https://doi.org/10.1111/j.1151-2916.1971.tb12186.x

    Article  CAS  Google Scholar 

  10. Vogel H (1921) Das Temperaturabhängigkeit Gesetz der Viskosität von Flüssigkeiten. Phys Zeitschrift 22:645

    CAS  Google Scholar 

  11. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339–355. https://doi.org/10.1111/j.1151-2916.1925.tb16731.x

    Article  CAS  Google Scholar 

  12. Tammann G, Hesse W (1926) Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift Für Anorg Und Allg Chemie 156:245–257. https://doi.org/10.1002/zaac.19261560121

    Article  Google Scholar 

  13. Adam G, Gibbs JH (1965) on the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139. https://doi.org/10.1063/1.1696442

    Article  CAS  Google Scholar 

  14. Pijpers TFJ, Mathot VBF, Goderis B, Scherrenberg RL, van der Vegte EW (2002) High-speed calorimetry for the study of the kinetics of (de)vitrification, crystallization, and melting of macromolecules. Macromolecules 35:3601–3613. https://doi.org/10.1021/ma011122u

    Article  CAS  Google Scholar 

  15. Adamovsky S, Minakov A, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403:55–63. https://doi.org/10.1016/S0040-6031(03)00182-5

    Article  CAS  Google Scholar 

  16. Adamovsky S, Schick C (2004) Ultra-fast isothermal calorimetry using thin film sensors. Thermochim Acta 415:1–7. https://doi.org/10.1016/j.tca.2003.07.015

    Article  CAS  Google Scholar 

  17. Minakov AA, Adamovsky SA, Schick C (2005) Non-adiabatic thin-film (chip) nanocalorimetry. Thermochim Acta 432:177–185. https://doi.org/10.1016/j.tca.2005.01.073

    Article  CAS  Google Scholar 

  18. Kolesov IS, Androsch R, Radusch H-J (2004) Non-isothermal crystallization of polyethylenes as function of cooling rate and concentration of short chain branches. J Therm Anal Calorim 78:885–895. https://doi.org/10.1007/s10973-004-0455-y

    Article  CAS  Google Scholar 

  19. Mettler T, Flash DSC, (n.d.). http://au.mt.com/au/en/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/Flash_DSC.html

  20. Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): First findings on polymers. Thermochim Acta 522:36–45. https://doi.org/10.1016/j.tca.2011.02.031

    Article  CAS  Google Scholar 

  21. van Herwaarden AW (2005) Overview of calorimeter chips for various applications. Thermochim Acta 432:192–201. https://doi.org/10.1016/j.tca.2005.04.027

    Article  CAS  Google Scholar 

  22. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 505:1–13. https://doi.org/10.1016/j.tca.2010.03.019

    Article  CAS  Google Scholar 

  23. Zhuravlev E, Schick C (2016) Non-adiabatic scanning calorimeter for controlled fast cooling and heating. In: Fast Scanning Calorimetry. Springer International Publishing, Cham, pp 81–104. https://doi.org/10.1007/978-3-319-31329-0_2

  24. Minakov AA, van Herwaarden AW, Wien W, Wurm A, Schick C (2007) Advanced nonadiabatic ultrafast nanocalorimetry and superheating phenomenon in linear polymers. Thermochim Acta 461:96–106. https://doi.org/10.1016/j.tca.2007.03.020

    Article  CAS  Google Scholar 

  25. Minakov AA, Schick C (2015) Dynamics of the temperature distribution in ultra-fast thin-film calorimeter sensors. Thermochim Acta 603:205–217. https://doi.org/10.1016/j.tca.2014.05.030

    Article  CAS  Google Scholar 

  26. Minakov AA, Roy SB, Bugoslavsky YV, Cohen LF (2005) Thin-film alternating current nanocalorimeter for low temperatures and high magnetic fields. Rev Sci Instrum 76:43906. https://doi.org/10.1063/1.1889432

    Article  CAS  Google Scholar 

  27. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim Acta 505:14–21. https://doi.org/10.1016/j.tca.2010.03.020

    Article  CAS  Google Scholar 

  28. Minakov AA, Mordvintsev DA, Schick C (2004) Melting and reorganization of poly(ethylene terephthalate) on fast heating (1000 K/s). Polymer 45:3755–3763. https://doi.org/10.1016/j.polymer.2004.03.072

    Article  CAS  Google Scholar 

  29. Gradys A, Sajkiewicz P, Minakov AA, Adamovsky S, Schick C, Hashimoto T, Saijo K (2005) Crystallization of polypropylene at various cooling rates. Mater Sci Eng, A 413–414:442–446. https://doi.org/10.1016/j.msea.2005.08.167

    Article  CAS  Google Scholar 

  30. Minakov AA, Mordvintsev DA, Schick C (1000) Isothermal reorganization of poly(ethylene terephthalate) revealed by fast calorimetry (1000 K s−1 ; 5 ms). Faraday Discuss 128(2005):261–270. https://doi.org/10.1039/b403441d

    Article  CAS  Google Scholar 

  31. De Santis F, Adamovsky S, Titomanlio G, Schick C (2006) Scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules 39:2562–2567. https://doi.org/10.1021/ma052525n

    Article  CAS  Google Scholar 

  32. Minakov AA, Mordvintsev DA, Tol R, Schick C (2006) Melting and reorganization of the crystalline fraction and relaxation of the rigid amorphous fraction of isotactic polystyrene on fast heating (30,000 K/min). Thermochim Acta 442:25–30. https://doi.org/10.1016/j.tca.2005.11.032

    Article  CAS  Google Scholar 

  33. Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov AA, Di Lorenzo ML, Schick C, Wunderlich B (2006) Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast calorimetry. J Polym Sci, Part B: Polym Phys 44:1364–1377. https://doi.org/10.1002/polb.20789

    Article  CAS  Google Scholar 

  34. Tol RT, Minakov AA, Adamovsky SA, Mathot VBF, Schick C (2006) Metastability of polymer crystallites formed at low temperature studied by ultra fast calorimetry: polyamide 6 confined in sub-micrometer droplets versus bulk PA6. Polymer 47:2172–2178. https://doi.org/10.1016/j.polymer.2006.01.052

    Article  CAS  Google Scholar 

  35. De Santis F, Adamovsky S, Titomanlio G, Schick C (2007) Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules 40:9026–9031. https://doi.org/10.1021/ma071491b

    Article  CAS  Google Scholar 

  36. Gradys A, Sajkiewicz P, Adamovsky S, Minakov A, Schick C (2007) Crystallization of poly(vinylidene fluoride) during ultra-fast cooling. Thermochim Acta 461:153–157. https://doi.org/10.1016/j.tca.2007.05.023

    Article  CAS  Google Scholar 

  37. Minakov AA, Wurm A, Schick C (2007) Superheating in linear polymers studied by ultrafast nanocalorimetry. Eur Phys J E 23:43. https://doi.org/10.1140/epje/i2007-10173-8

    Article  PubMed  CAS  Google Scholar 

  38. Ray VV, Banthia AK, Schick C (2007) Fast isothermal calorimetry of modified polypropylene clay nanocomposites. Polymer 48:2404–2414. https://doi.org/10.1016/j.polymer.2007.02.055

    Article  CAS  Google Scholar 

  39. Silvestre C, Cimmino S, Duraccio D, Schick C (2007) Isothermal crystallization of isotactic poly(propylene) studied by superfast calorimetry. Macromol Rapid Commun 28:875–881. https://doi.org/10.1002/marc.200600844

    Article  CAS  Google Scholar 

  40. Krumme A, Lehtinen A, Adamovsky S, Schick C, Roots J, Viikna A (2008) Crystallization behavior of some unimodal and bimodal linear low-density polyethylenes at moderate and high supercooling. J Polym Sci, Part B: Polym Phys 46:1577–1588. https://doi.org/10.1002/polb.21494

    Article  CAS  Google Scholar 

  41. Schick C (2009) Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem 395:1589–1611. https://doi.org/10.1007/s00216-009-3169-y

    Article  PubMed  CAS  Google Scholar 

  42. Brucato V, Piccarolo S, La Carrubba V (2002) An experimental methodology to study polymer crystallization under processing conditions. The influence of high cooling rates. Chem Eng Sci 57:4129–4143. https://doi.org/10.1016/S0009-2509(02)00360-3

    Article  CAS  Google Scholar 

  43. Janeschitz-Kriegl H (2010) Crystallization modalities in polymer melt processing. Springer Vienna, Vienna. https://doi.org/10.1007/978-3-211-87627-5

  44. Cebe P, Partlow BP, Kaplan DL, Wurm A, Zhuravlev E, Schick C (2015) Using flash DSC for determining the liquid state heat capacity of silk fibroin. Thermochim Acta 615:8–14. https://doi.org/10.1016/j.tca.2015.07.009

    Article  CAS  Google Scholar 

  45. Lopeandía AF, Cerdó LI, Clavaguera-Mora MT, Arana LR, Jensen KF, Muñoz FJ, Rodríguez-Viejo J (2005) Sensitive power compensated scanning calorimeter for analysis of phase transformations in small samples. Rev Sci Instrum 76: 65104. https://doi.org/10.1063/1.1921567

  46. Lopeandia AF, Valenzuela J, Rodríguez-Viejo J (2008) Power compensated thin film calorimetry at fast heating rates. Sensors Actuators A Phys 143:256–264. https://doi.org/10.1016/j.sna.2007.11.006

    Article  CAS  Google Scholar 

  47. Merzlyakov M (2006) Method of rapid (100,000 Ks−1) controlled cooling and heating of thin samples. Thermochim Acta 442:52–60. https://doi.org/10.1016/j.tca.2005.11.018

    Article  CAS  Google Scholar 

  48. van Herwaarden S, Iervolino E, van Herwaarden F, Wijffels T, Leenaers A, Mathot V (2011) Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim Acta 522:46–52. https://doi.org/10.1016/j.tca.2011.05.025

    Article  CAS  Google Scholar 

  49. Iervolino E, van Herwaarden AW, van Herwaarden FG, van de Kerkhof E, van Grinsven PPW, Leenaers ACHI, Mathot VBF, Sarro PM (2011) Temperature calibration and electrical characterization of the differential scanning calorimeter chip UFS1 for the Mettler-Toledo Flash DSC 1. Thermochim Acta 522:53–59. https://doi.org/10.1016/j.tca.2011.01.023

    Article  CAS  Google Scholar 

  50. Poel GV, Sargsyan A, Mathot V, Assche GV, Wurm A, Schick C, Krumme A, Zhou D (2011) Recommendation for temperature calibration of fast scanning calorimeters (FsCs) for sample mass and scan rate. Beuth Verlag GmbH, Berlin

    Google Scholar 

  51. Vanden Poel G, Istrate D, Magon A, Mathot V (2012) Performance and calibration of the Flash DSC 1, a new, MEMS-based fast scanning calorimeter. J Therm Anal Calorim 110:1533–1546. https://doi.org/10.1007/s10973-012-2722-7

    Article  CAS  Google Scholar 

  52. Baur H, Wunderlich B (1998) About complex heat capacities and temperature-modulated calorimetry. J Therm Anal Calorim 54:437–465. https://doi.org/10.1023/A:1010126005720

    Article  CAS  Google Scholar 

  53. Schäfer K (1940) Die Stoßanregung intramolekularer Schwingungen in Gasen und Gasmischungen. VII. Theorie der Schalldispersion bei Vorhandensein mehrerer Normalschwingungen, Zeitschrift Für Phys Chemie 46B. https://doi.org/10.1515/zpch-1940-4613

  54. Jeong Y-H (2001) Modern calorimetry: going beyond tradition. Thermochim Acta 377:1–7. https://doi.org/10.1016/S0040-6031(01)00538-X

    Article  CAS  Google Scholar 

  55. Alig I (1997) Ultrasonic relaxation and complex heat capacity. Thermochim Acta 304–305:35–49. https://doi.org/10.1016/S0040-6031(97)00174-3

    Article  Google Scholar 

  56. Khalife A, Pathak U, Richert R (2011) Heating liquid dielectrics by time dependent fields. Eur Phys J B 83:429–435. https://doi.org/10.1140/epjb/e2011-20599-5

    Article  CAS  Google Scholar 

  57. Richert R (2011) Calorimetry based on energy absorbed from time-dependent fields. J Non Cryst Solids 357:726–730. https://doi.org/10.1016/j.jnoncrysol.2010.05.088

    Article  CAS  Google Scholar 

  58. Richert R (2011) Reverse calorimetry of a supercooled liquid: propylene carbonate. Thermochim Acta 522:28–35. https://doi.org/10.1016/j.tca.2010.09.016

    Article  CAS  Google Scholar 

  59. Birge N (1986) Specific-heat spectroscopy of glycerol and propylene glycol near the glass transition. Phys Rev B 34:1631–1642. https://doi.org/10.1103/PhysRevB.34.1631

    Article  CAS  Google Scholar 

  60. Suga H (2001) Adiabatic calorimeter as an ultra-low frequency spectrometer: interplay between phase and glass transitions in solids. Thermochim Acta 377:35–49. https://doi.org/10.1016/S0040-6031(01)00540-8

    Article  CAS  Google Scholar 

  61. Suga H (2005) Ultra-slow relaxation in ice and related substances. Proc Japan Acad Ser B 81:349–362. https://doi.org/10.2183/pjab.81.349

    Article  CAS  Google Scholar 

  62. Schick C, Tanneberger H, Donth E (1980) Ergebnisse direkter messungen der enthalpieretardation in PVC und ihr zusammenhang mit dem glasübergang und der struktur, Die Makromol. Chemie, Rapid Commun 1:407–409. https://doi.org/10.1002/marc.1980.030010611

    Article  CAS  Google Scholar 

  63. Schick C, Tanneberger H, Donth E (1982) Zeitabhängigkeit der Enthalpie im Glasübergangsbereich von Polyvinylchlorid. Acta Polym 33:163–168. https://doi.org/10.1002/actp.1982.010330301

    Article  CAS  Google Scholar 

  64. Hemminger W, Höhne GWH (1984) Calorimetry - fundamentals and practice. Vch., Weinheim. https://doi.org/10.1002/bbpc.19850891130

  65. Höhne GWH, Hemminger WF, Flammersheim H-J (2003) Differential scanning calorimetry. Springer, Berlin. https://doi.org/10.1007/978-3-662-06710-9

  66. Boller A, Schick C, Wunderlich B (1995) Modulated differential scanning calorimetry in the glass transition region. Thermochim Acta 266:97–111. https://doi.org/10.1016/0040-6031(95)02552-9

    Article  CAS  Google Scholar 

  67. Schawe JEK (1995) Principles for the interpretation of modulated temperature DSC measurements. Part 1. Glass transition. Thermochim Acta 261:183–194. https://doi.org/10.1016/0040-6031(95)02315-S

    Article  CAS  Google Scholar 

  68. Merzlyakov M, Schick C (1999) Complex heat capacity measurements by TMDSC Part 1. Influence of non-linear thermal response. Thermochim Acta 330:55–64. https://doi.org/10.1016/S0040-6031(99)00040-4

    Article  CAS  Google Scholar 

  69. Höhne GWH, Merzlyakov M, Schick C (2002) Calibration of magnitude and phase angle of TMDSC: Part1: basic considerations. Thermochim Acta 391:51–67. https://doi.org/10.1016/S0040-6031(02)00163-6

    Article  Google Scholar 

  70. Merzlyakov M, Höhne GWH, Schick C (2002) Calibration of magnitude and phase angle of TMDSC: Part 2. Calibration practice. Thermochim Acta 391:69–80. https://doi.org/10.1016/S0040-6031(02)00164-8

    Article  CAS  Google Scholar 

  71. Kamasa P, Merzlyakov M, Pyda M, Pak J, Schick C, Wunderlich B (2002) Multi-frequency heat capacity measured with different types of TMDSC. Thermochim Acta 392–393:195–207. https://doi.org/10.1016/S0040-6031(02)00102-8

    Article  Google Scholar 

  72. Schawe JEK, Hütter T, Heitz C, Alig I, Lellinger D (2006) Stochastic temperature modulation: A new technique in temperature-modulated DSC. Thermochim Acta 446:147–155. https://doi.org/10.1016/j.tca.2006.01.031

    Article  CAS  Google Scholar 

  73. Merzlyakov M, Schick C (2001) Simultaneous multi-frequency TMDSC measurements. Thermochim Acta 377:193–204. https://doi.org/10.1016/S0040-6031(01)00554-8

    Article  CAS  Google Scholar 

  74. Merzlyakov M, Schick C (2001) Step response analysis in DSC — a fast way to generate heat capacity spectra. Thermochim Acta 380:5–12. https://doi.org/10.1016/S0040-6031(01)00631-1

    Article  CAS  Google Scholar 

  75. Sullivan P, Seidel G (1966) An ac temperature technique for measuring heat capacities. Ann Acad Sci Fenn. A VI 58–62

    Google Scholar 

  76. Kraftmakher Y (2004) Modulation calorimetry. Springer, Berlin. http://www.springer.com/gp/book/9783540210825

  77. Christensen T, Olsen NB, Dyre JC, Tokuyama M, Oppenheim I, Nishiyama H (2008) Can the frequency dependent isobaric specific heat be measured by thermal effusion methods? In: AIP Conference Proceedings, AIP, pp 139–141. https://doi.org/10.1063/1.2897769

  78. Jakobsen B, Olsen NB, Christensen T (2010) Frequency-dependent specific heat from thermal effusion in spherical geometry. Phys Rev E 81:61505. https://doi.org/10.1103/PhysRevE.81.061505

    Article  CAS  Google Scholar 

  79. Christensen T, Olsen NB, Dyre JC (2007) Conventional methods fail to measure cp(w) of glass-forming liquids. Phys Rev E 75:41502. https://doi.org/10.1103/PhysRevE.75.041502

    Article  CAS  Google Scholar 

  80. Birge NO, Nagel SSR (1985) Specific-heat spectroscopy of the glass transition. Phys Rev Lett 54:2674–2677. https://doi.org/10.1103/PhysRevLett.54.2674

    Article  PubMed  CAS  Google Scholar 

  81. Christensen T (1985) The frequency dependence of the specific heat at the glass transition. Le J Phys Colloq 46: C8-635-C8-637. https://doi.org/10.1051/jphyscol:19858102

  82. Glorieux C, Nelson KA, Hinze G, Fayer MD (2002) Thermal, structural, and orientational relaxation of supercooled salol studied by polarization-dependent impulsive stimulated scattering. J Chem Phys 116:3384–3395. https://doi.org/10.1063/1.1445749

    Article  CAS  Google Scholar 

  83. Bentefour EH, Glorieux C, Chirtoc M, Thoen J (2003) Broadband photopyroelectric thermal spectroscopy of a supercooled liquid near the glass transition. J Appl Phys 93:9610–9614. https://doi.org/10.1063/1.1576300

    Article  CAS  Google Scholar 

  84. Merzlyakov M (2003) Integrated circuit thermopile as a new type of temperature modulated calorimeter. Thermochim Acta 403:65–81. https://doi.org/10.1016/S0040-6031(03)00083-2

    Article  CAS  Google Scholar 

  85. Huth H, Minakov AA, Schick C (2006) Differential AC-chip calorimeter for glass transition measurements in ultrathin films. J Polym Sci, Part B: Polym Phys 44:2996–3005. https://doi.org/10.1002/polb.20921

    Article  CAS  Google Scholar 

  86. Huth H, Minakov AA, Serghei A, Kremer F, Schick C (2007) Differential AC-chip calorimeter for glass transition measurements in ultra thin polymeric films. Eur. Phys. J. Spec. Top. 141:153–160. https://doi.org/10.1140/epjst/e2007-00033-y

    Article  Google Scholar 

  87. Ahrenberg M, Shoifet E, Whitaker KR, Huth H, Ediger MD, Schick C (2012) Differential alternating current chip calorimeter for in situ investigation of vapor-deposited thin films. Rev Sci Instrum 83:33902. https://doi.org/10.1063/1.3692742

    Article  CAS  Google Scholar 

  88. Shoifet E, Chua YZ, Huth H, Schick C (2013) High frequency alternating current chip nano calorimeter with laser heating. Rev Sci Instrum 84:73903. https://doi.org/10.1063/1.4812349

    Article  CAS  Google Scholar 

  89. Svanidze AV, Huth H, Lushnikov SG, Kojima S, Schick C (2009) Phase transition in tetragonal hen egg-white lysozyme crystals. Appl Phys Lett 95:263702. https://doi.org/10.1063/1.3275858

    Article  CAS  Google Scholar 

  90. Svanidze AV, Huth H, Lushnikov SG, Schick C (2012) Study of phase transition in tetragonal lysozyme crystals by AC-nanocalorimetry. Thermochim Acta 544:33–37. https://doi.org/10.1016/j.tca.2012.06.013

    Article  CAS  Google Scholar 

  91. Ahrenberg M, Chua YZ, Whitaker KR, Huth H, Ediger MD, Schick C (2013) In situ investigation of vapor-deposited glasses of toluene and ethylbenzene via alternating current chip-nanocalorimetry. J Chem Phys 138:24501. https://doi.org/10.1063/1.4773354

    Article  CAS  Google Scholar 

  92. Weyer S, Hensel A, Schick C (1997) Phase angle correction for TMDSC in the glass-transition region. Thermochim Acta 304–305:267–275. https://doi.org/10.1016/S0040-6031(97)00180-9

    Article  Google Scholar 

  93. Boucher VM, Cangialosi D, Yin H, Schönhals A, Alegría A, Colmenero J (2012) Tg depression and invariant segmental dynamics in polystyrene thin films. Soft Matter 8:5119. https://doi.org/10.1039/c2sm25419k

    Article  CAS  Google Scholar 

  94. Priestley RD, Cangialosi D, Napolitano S (2015) On the equivalence between the thermodynamic and dynamic measurements of the glass transition in confined polymers. J Non Cryst Solids 407:288–295. https://doi.org/10.1016/j.jnoncrysol.2014.09.048

    Article  CAS  Google Scholar 

  95. Cangialosi D, Alegría A, Colmenero J (2016) Effect of nanostructure on the thermal glass transition and physical aging in polymer materials. Prog Polym Sci 54–55:128–147. https://doi.org/10.1016/j.progpolymsci.2015.10.005

    Article  CAS  Google Scholar 

  96. Perez-de-Eulate NG, Di Lisio V, Cangialosi D (2017) Glass transition and molecular dynamics in polystyrene nanospheres by fast scanning calorimetry. ACS Macro Lett. 6:859–863. https://doi.org/10.1021/acsmacrolett.7b00484

    Article  CAS  Google Scholar 

  97. Schick C, Lexa D, Leibowitz L (2012) Differential scanning calorimetry and differential thermal analysis. In: Kaufmann EN (ed) Characterization Materials, 1st ed. Wiley Inc, New York, pp 483–495

    Google Scholar 

  98. Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials. J Non Cryst Solids 169:211–266. https://doi.org/10.1016/0022-3093(94)90321-2

    Article  CAS  Google Scholar 

  99. Tool AQ (1946) Relation between inelastic deformability and thermal expansion of glass in its annealing range*. J Am Ceram Soc 29:240–253. https://doi.org/10.1111/j.1151-2916.1946.tb11592.x

    Article  CAS  Google Scholar 

  100. Moynihan CT, Easteal AJ, DeBolt MA, Tucker J (1976) Dependence of the fictive temperature of glass on cooling rate. J Am Ceram Soc 59:12–16. https://doi.org/10.1111/j.1151-2916.1976.tb09376.x

    Article  CAS  Google Scholar 

  101. Sarge SM, Hemminger W, Gmelin E, Höhne GWH, Cammenga HK, Eysel W (1997) Metrologically based procedures for the temperature, heat and heat flow rate calibration of DSC. J Therm Anal 49:1125–1134. https://doi.org/10.1007/BF01996802

    Article  CAS  Google Scholar 

  102. Hao N, Böhning M, Schönhals A (2007) Dielectric properties of nanocomposites based on polystyrene and polyhedral oligomeric phenethyl-silsesquioxanes. Macromolecules 40:9672–9679. https://doi.org/10.1021/ma071777g

    Article  CAS  Google Scholar 

  103. Chua YZ, Schulz G, Shoifet E, Huth H, Zorn R, Scmelzer JWP, Schick C (2014) Glass transition cooperativity from broad band heat capacity spectroscopy. Colloid Polym Sci 292:1893–1904. https://doi.org/10.1007/s00396-014-3280-2

    Article  CAS  Google Scholar 

  104. Beiner M, Garwe F, Schröter K, Donth E (1994) Dynamic shear modulus in the splitting region of poly(alkyl methacrylates). Colloid Polym Sci 272:1439–1446. https://doi.org/10.1007/BF00654174

    Article  CAS  Google Scholar 

  105. O’Reilly JM, Hodge IM (1991) Effects of heating rate on enthalpy recovery in polystyrene. J Non Cryst Solids 131–133:451–456. https://doi.org/10.1016/0022-3093(91)90338-7

    Article  Google Scholar 

  106. Hadač J, Slobodian P, Říha P, Sáha P, Rychwalski RW, Emri I, Kubát J (2007) Effect of cooling rate on enthalpy and volume relaxation of polystyrene. J Non Cryst Solids 353:2681–2691. https://doi.org/10.1016/j.jnoncrysol.2007.05.017

    Article  CAS  Google Scholar 

  107. Wunderlich B (1995) The ATHAS database on heat capacities of polymers. Pure Appl Chem 67:1019–1026. https://doi.org/10.1351/pac199567061019

    Article  CAS  Google Scholar 

  108. Pyda M, Wunderlich B (2013) ATHAS Data Bank. http://www.springermaterials.com

  109. Kovacs AJ, Aklonis JJ, Hutchinson JM, Ramos AR (1979) Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J Polym Sci Polym Phys Ed 17:1097–1162. https://doi.org/10.1002/pol.1979.180170701

    Article  CAS  Google Scholar 

  110. Mazinani SKS, Richert R (2012) Enthalpy recovery in glassy materials: heterogeneous versus homogenous models. J. Chem. Phys. 136:174515. https://doi.org/10.1063/1.4712032

    Article  PubMed  CAS  Google Scholar 

  111. Prigogine I, Defay R (1954) Chemical thermodynamics. Longmans, London

    Google Scholar 

  112. Möller J, Gutzow I, Schmelzer JWP (2006) Freezing-in and production of entropy in vitrification. J Chem Phys 125:94505. https://doi.org/10.1063/1.2346673

    Article  CAS  Google Scholar 

  113. Tropin TV, Schmelzer JWP, Schick C (2011) On the dependence of the properties of glasses on cooling and heating rates I. Entropy, entropy production and glass transition temperature. J Non Cryst Solids 357: 1291–1302. https://doi.org/10.1016/j.jnoncrysol.2010.11.111

  114. Tropin TV, Schmelzer JWP, Schick C (2011) On the dependence of the properties of glasses on cooling and heating rates II. Prigogine-Defay ratio, fictive temperature and fictive pressure. J Non Cryst Solids 357: 1303–1309. https://doi.org/10.1016/j.jnoncrysol.2010.12.005

  115. Gutzow I, Grigorova T, Avramov I, Schmelzer JWP (2002) Generic phenomenology of vitrification and relaxation and the Kohlrausch and Maxwell equations. Phys Chem Glas 43C: 477–486. http://www.ipc.bas.bg/PPages/Avramov/Edinb_477-486.pdf

  116. Moynihan CT, Macedo PB, Montrose CJ, Gupta PK, DeBolt MA, Dill JF, Dom BE, Drake PW, Easteal AJ, Elterman PB, Moeller RP, Sasabe H, Wilder JA (1976) Structural relaxation in vitreous materials. Ann NY Acad Sci 279: 15–35. https://doi.org/10.1111/j.1749-6632.1976.tb39688.x

  117. Weyer S, Merzlyakov M, Schick C (2001) Application of an extended Tool–Narayanaswamy–Moynihan model. Part 1. Description of vitrification and complex heat capacity measured by temperature-modulated DSC. Thermochim Acta 377:85–96. https://doi.org/10.1016/S0040-6031(01)00543-3

    Article  CAS  Google Scholar 

  118. Schmelzer JWP (2012) Kinetic criteria of glass formation and the pressure dependence of the glass transition temperature. J Chem Phys 136:74512. https://doi.org/10.1063/1.3685510

    Article  CAS  Google Scholar 

  119. Schmelzer JWP, Tropin TV (2015) Kinetic criteria of glass-formation, pressure dependence of the glass-transition temperature, and the Prigogine-Defay ratio. J Non Cryst Solids 407. https://doi.org/10.1016/j.jnoncrysol.2014.07.049

  120. Scherer GW (1984) Use of the Adam-Gibbs equation in the analysis of structural relaxation. J Am Ceram Soc 67:504–511. https://doi.org/10.1111/j.1151-2916.1984.tb19643.x

    Article  CAS  Google Scholar 

  121. Hutchinson JM, Montserrat S, Calventus Y, Cortés P (2000) Application of the Adam–Gibbs equation to the non-equilibrium glassy state. Macromolecules 33:5252–5262. https://doi.org/10.1021/ma992015r

    Article  CAS  Google Scholar 

  122. Brunacci A, Cowie JMG, Ferguson R, Gómez Ribelles JL, Vidaurre Garayo A (1996) Structural relaxation in polystyrene and some polystyrene derivatives. Macromolecules 29:7976–7988. https://doi.org/10.1021/ma960336m

    Article  CAS  Google Scholar 

  123. Gómez JL, Ribelles M, Monleón Pradas M, Vidaurre Garayo A, Romero Colomer F, Mas Estelles J, Meseguer Duenas JM (1995) Structural relaxation of glass-forming polymers based on an equation for configurational entropy. 2. Structural relaxation in polymethacrylates. Macromolecules 28:5878–5885. https://doi.org/10.1021/ma00121a026

    Article  Google Scholar 

  124. Cangialosi D, Boucher VM, Alegría A, Colmenero J (2013) Direct evidence of two equilibration mechanisms in glassy polymers. Phys Rev Lett 111:95701. https://doi.org/10.1103/PhysRevLett.111.095701

    Article  CAS  Google Scholar 

  125. Schmelzer JWP, Tropin TV (2013) Dependence of the width of the glass transition interval on cooling and heating rates. J Chem Phys 138:34507. https://doi.org/10.1063/1.4775802

    Article  CAS  Google Scholar 

  126. Tropin TV, Schmelzer JWP, Aksenov VL (2017) On the possibility of modeling of polymers glass transition in a wide range of cooling and heating rates. J Mol Liq 235:172–177. https://doi.org/10.1016/j.molliq.2016.12.009

    Article  CAS  Google Scholar 

  127. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313. https://doi.org/10.1093/comjnl/7.4.308

    Article  Google Scholar 

  128. Koh YP, Simon SL (2013) Enthalpy recovery of polystyrene: does a long-term aging plateau exist? Macromolecules 46:5815–5821. https://doi.org/10.1021/ma4011236

    Article  CAS  Google Scholar 

  129. Liu G, Zuo Y, Zhao D, Zhang M (2014) Study on enthalpy relaxation of polystyrene by assuming the existence of an intermediate aging plateau. J Non Cryst Solids 402:160–165. https://doi.org/10.1016/j.jnoncrysol.2014.06.002

    Article  CAS  Google Scholar 

  130. Liu G, Li L, Zheng Y, Zuo Y (2013) Temperature gradient in sample and its effect on enthalpy relaxation model fitting of polystyrene. J Non Cryst Solids 365:13–22. https://doi.org/10.1016/j.jnoncrysol.2013.01.017

    Article  CAS  Google Scholar 

  131. Richert R (2011) Heat capacity in the glass transition range modeled on the basis of heterogeneous dynamics. J Chem Phys 134:144501. https://doi.org/10.1063/1.3577580

    Article  PubMed  CAS  Google Scholar 

  132. Liu G, Zuo Y, Lin J, Zhao D (2014) Study on enthalpy relaxation of glassy polystyrene using a structure-dependent Kohlrausch stretch exponent combined with coupling model. Eur Phys J E Soft Matter 37:63. https://doi.org/10.1140/epje/i2014-14063-8

    Article  CAS  Google Scholar 

  133. Simon SL, Sobieski JW, Plazek DJ (2001) Volume and enthalpy recovery of polystyrene. Polymer 42:2555–2567. https://doi.org/10.1016/S0032-3861(00)00623-6

    Article  CAS  Google Scholar 

  134. Wang LM, Velikov V, Angell CA (2002) Direct determination of kinetic fragility indices of glassforming liquids by differential scanning calorimetry: kinetic versus thermodynamic fragilities. J Chem Phys 117:10184–10192. https://doi.org/10.1063/1.1517607

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CS acknowledges the financial support from the Ministry of Education and Science of the Russian Federation, grant 14.Y26.31.0019. T. V. and J. W. P. acknowledge the financial support by the Heisenberg-Landau program of the German Federal Ministry of Education and Research (BMBF, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tropin, T.V., Schmelzer, J.W.P., Schulz, G., Schick, C. (2018). The Calorimetric Glass Transition in a Wide Range of Cooling Rates and Frequencies. In: Kremer, F., Loidl, A. (eds) The Scaling of Relaxation Processes. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-72706-6_10

Download citation

Publish with us

Policies and ethics