Skip to main content

Exact and “Exact” Formulae in the Theory of Composites

  • Conference paper
  • First Online:
Book cover Modern Problems in Applied Analysis

Part of the book series: Trends in Mathematics ((TM))

Abstract

The effective properties of composites and review literature on the methods of Rayleigh, Natanzon–Filshtinsky, functional equations and asymptotic approaches are outlined. In connection with the above methods and new recent publications devoted to composites, we discuss the terms analytical formula, approximate solution, closed form solution, asymptotic formula, etc…frequently used in applied mathematics and engineering in various contexts. Though mathematicians give rigorous definitions of exact form solution the term “exact solution” continues to be used too loosely and its attributes are lost. In the present paper, we give examples of misleading usage of such a term.

Unfairly recognizes advertising, which advertises under the guise of one commodity another product.

—a shortened form of FTC Act, as amended, §15(a), 15 U.S.C.A. §55(a) (Supp. 1938)

The complexity of the model is a measure of misunderstanding the essence of the problem.

—A.Ya. Findlin [20]

Electronic Supplementary Material The online version of this article (https://doi.org/10.1007/978-3-319-72640-3_2) contains supplementary material, which is available to authorized users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    However, an integral is accepted. In the same time, Riemann’s integral is a limit of Riemann’s sums, i.e., it is a series.

  2. 2.

    Not “exact”.

  3. 3.

    The most unexpected paper concerning doubly periodic functions belongs to Wang & Wang [69] where in this one paper (i) rediscovered Weierstrass’s functions [69, (2.29) and (2.30)], (ii) rediscovered Eisenstein’s summation approach [69, (2.18)], and (iii) solved a boundary value problem easily solved by means of the standard conformal mapping.

References

  1. I.V. Andrianov, J. Awrejcewicz, New trends in asymptotic approaches: summation and interpolation methods. Appl. Mech. Rev. 54, 69–92 (2001)

    Article  Google Scholar 

  2. I.V. Andrianov, H. Topol, Asymptotic analysis and synthesis in mechanics of solids and nonlinear dynamics (2011). arxiv.org/abs/1106.1783.

    Google Scholar 

  3. I.V. Andrianov, J. Awrejcewicz, B. Markert, G.A. Starushenko, Analytical homogenization for dynamic analysis of composite membranes with circular inclusions in hexagonal lattice structures. Int. J. Struct. Stab. Dyn. 17, 1740015 (2017)

    Article  MathSciNet  Google Scholar 

  4. B.Ya. Balagurov, Effective electrical characteristics of a two-dimensional three-component doubly-periodic system with circular inclusions. J. Exp. Theor. Phys. 92, 123–134 (2001)

    Google Scholar 

  5. B.Ya. Balagurov, Electrophysical Properties of Composite: Macroscopic Theory (URSS, Moscow, 2015) (in Russian)

    Google Scholar 

  6. B.Ya. Balagurov, V.A. Kashin, Conductivity of a two-dimensional system with a periodic distribution of circular inclusions. J. Exp. Theor. Phys. 90, 850–860 (2000)

    Google Scholar 

  7. B.Ya. Balagurov, V.A. Kashin, Analytic properties of the effective dielectric constant of a two-dimensional Rayleigh model. J. Exp. Theor. Phys. 100, 731–741 (2005)

    Google Scholar 

  8. D.I. Bardzokas, M.L. Filshtinsky, L.A. Filshtinsky, Mathematical Methods in Electro-Magneto-Elasticity (Springer, Berlin, 2007)

    MATH  Google Scholar 

  9. L. Berlyand, V. Mityushev, Increase and decrease of the effective conductivity of a two phase composites due to polydispersity. J. Stat. Phys. 118, 481–509 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Berlyand, A. Novikov, Error of the network approximation for densely packed composites with irregular geometry. SIAM J. Math. Anal. 34, 385–408 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. L.C. Botten, N.A. Nicorovici, R.C. McPhedran, C.M. de Sterke, A.A. Asatryan, Photonic band structure calculations using scattering matrices. Phys. Rev. E 64, 046603 (1971)

    Article  Google Scholar 

  12. J. Bravo-Castillero, R. Guinovart-Diaz, F.J. Sabina, R. Rodriguez-Ramos, Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents - II. Piezoelectric and square symmetry. Mech. Mater. 33, 237–248 (2001)

    MATH  Google Scholar 

  13. A.M. Dykhne, Conductivity of a two-dimensional two-phase system. Sov. Phys. JETP 32, 63–65 (1971)

    Google Scholar 

  14. E.S. Ferguson, How engineers lose touch. Invent. Technol. 8, 16–24 (1993)

    Google Scholar 

  15. L.A. Fil’shtinskii, Heat-conduction and thermoelasticity problems for a plane weakened by a doubly periodic system of identical circular holes. Tepl. Napryazh. Elem. Konstr. 4, 103–112 (1964) (in Russian)

    Google Scholar 

  16. L.A. Fil’shtinskii, Stresses and displacements in an elastic sheet weakened by a doubly periodic set of equal circular holes. J. Appl. Math. Mech. 28, 530–543 (1964)

    Article  MathSciNet  Google Scholar 

  17. L.A. Fil’shtinskii, Toward a solution of two-dimensional doubly periodic problems of the theory of elasticity. PhD thesis (Novosibirsk University, Novosibirsk, 1964) (in Russian)

    Google Scholar 

  18. L.A. Fil’shtinskii, Physical fields modelling in piece-wise homogeneous deformable solids. Publ. SSU, Sumy (2001) (in Russian)

    Google Scholar 

  19. L. Filshtinsky, V. Mityushev, Mathematical models of elastic and piezoelectric fields in two-dimensional composites, in Mathematics Without Boundaries, ed. by P.M. Pardalos, Th.M. Rassias. Surveys in Interdisciplinary Research (Springer, New York, 2014), pp. 217–262

    Google Scholar 

  20. A.Ya. Findlin, Peculiarities of the use of computational methods in applied mathematics (on global computerization and common sense). Applied Mathematics: Subject, Logic, Peculiarities of Approaches. With Examples from Mechanics, ed. by I.I. Blekhman, A.D. Myshkis, Ya.G. Panovko (URSS, Moscow, 2007), pp. 350–358 (in Russian)

    Google Scholar 

  21. F.D. Gakhov, Boundary Value Problems, 3rd edn. (Nauka, Moscow, 1977) (in Russian); Engl. transl. of 1st edn. (Pergamon Press, Oxford, 1966)

    MATH  Google Scholar 

  22. Y.A. Godin, The effective conductivity of a periodic lattice of circular inclusions. J. Math. Phys. 53, 063703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. G.M. Golusin, Solution to basic plane problems of mathematical physics for the case of Laplace’s equation and multiply connected domains bounded by circles (method of functional equations). Matematicheskij zbornik 41, 246–276 (1934) (in Russian)

    Google Scholar 

  24. E.I. Grigolyuk, L.A. Filshtinsky, Perforated Plates and Shells (Nauka, Moscow, 1970) (in Russian)

    Google Scholar 

  25. E.I. Grigolyuk, L.A. Filshtinsky, Periodical Piece-Homogeneous Elastic Structures (Nauka, Moscow, 1991) (in Russian)

    Google Scholar 

  26. E.I. Grigolyuk, L.A. Filshtinsky, Regular Piece-Homogeneous Structures with Defects (Fiziko-Matematicheskaja Literatura, Moscow, 1994) (in Russian)

    Google Scholar 

  27. E.I. Grigolyuk, L.M. Kurshin, L.A. Fil’shtinskii, On a method to solve doubly periodic elastic problems. Prikladnaya Mekhanika (Appl. Mech.) 1, 22–31 (1965) (in Russian)

    Google Scholar 

  28. R. Guinovart-Diaz, J. Bravo-Castillero, R. Rodriguez-Ramos, F.J. Sabina, Closed-form expressions for the effective coefficients of a fibre-reinforced composite with transversely isotropic constituents – I. Elastic and hexagonal symmetry. J. Mech. Phys. Solids 49, 1445–1462 (2001)

    Article  MATH  Google Scholar 

  29. R. Guinovart-Diaz, R. Rodriguez-Ramos, J. Bravo-Castillero, F.J. Sabina, G.A. Maugin, Closed-form thermoelastic moduli of a periodic three-phase fiber-reinforced composite. J. Therm. Stresses 28, 1067–1093 (2005)

    Article  MathSciNet  Google Scholar 

  30. J. Gleik, Chaos: Making a New Science (Viking Penguin, New York, 1987)

    Google Scholar 

  31. S. Gluzman, V. Mityushev, W. Nawalaniec, Computational Analysis of Structured Media (Elsevier, Amsterdam, 2017)

    MATH  Google Scholar 

  32. A.N. Guz, V.D. Kubenko, M.A. Cherevko, Diffraction of Elastic Waves (Naukova Dumka, Kiev, 1978) (in Russian).

    Google Scholar 

  33. A.L. Kalamkarov, I.V. Andrianov, G.A. Starushenko, Three-phase model for a composite material with cylindrical circular inclusions. Part I: application of the boundary shape perturbation method. Int. J. Eng. Sci. 78, 154–177 (2014)

    Google Scholar 

  34. A.L. Kalamkarov, I.V. Andrianov, G.A. Starushenko, Three-phase model for a composite material with cylindrical circular inclusions. Part II: application of Padé approximants. Int. J. Eng. Sci. 78, 178–219 (2014)

    Google Scholar 

  35. A.L. Kalamkarov, I.V. Andrianov, P.M.C.L. Pacheco, M.A. Savi, G.A. Starushenko, Asymptotic analysis of fiber-reinforced composites of hexagonal structure. J. Multiscale Model. 7, 1650006 (2016)

    Article  MathSciNet  Google Scholar 

  36. L.V. Kantorovich, V.I. Krylov, Approximate Methods of Higher Analysis (Noordhoff, Groningen, 1958)

    MATH  Google Scholar 

  37. I. Kushch, Stress concentration and effective stiffness of aligned fiber reinforced composite with anisotropic constituents. Int. J. Solids Struct. 45, 5103–5117 (2008)

    Article  MATH  Google Scholar 

  38. I. Kushch, Transverse conductivity of unidirectional fibrous composite with interface arc cracks. Int. J. Eng. Sci. 48, 343–356 (2010)

    Article  MATH  Google Scholar 

  39. I. Kushch, Micromechanics of Composites (Elsevier/Butterworth-Heinemann, Amsterdam/Oxford, 2013)

    Google Scholar 

  40. I. Kushch, S.V. Shmegera, V.A. Buryachenko, Elastic equilibrium of a half plane containing a finite array of elliptic inclusions. Int. J. Solids Struct. 43, 3459–3483 (2006)

    Article  MATH  Google Scholar 

  41. R.C. McPhedran, D.R. McKenzie, The conductivity of lattices of spheres. I. The simple cubic lattice. Proc. Roy. Soc. London A359, 45–63 (1978)

    Article  Google Scholar 

  42. R.C. McPhedran, L. Poladian, G.W. Milton, Asymptotic studies of closely spaced, highly conducting cylinders. Proc. Roy. Soc. London A415, 185–196 (1988)

    Article  Google Scholar 

  43. S.G. Mikhlin, Integral Equations and their Applications to Certain Problems in Mechanics, Mathematical Physics, and Technology, 2nd edn. (Pergamon Press, Oxford, 1964)

    MATH  Google Scholar 

  44. V. Mityushev, Boundary value problems and functional equations with shifts in domains, PhD Thesis, Minsk (1984) (in Russian)

    Google Scholar 

  45. V. Mityushev, Plane problem for the steady heat conduction of material with circular inclusions. Arch. Mech. 45, 211–215 (1993)

    MathSciNet  MATH  Google Scholar 

  46. V. Mityushev, Generalized method of Schwarz and addition theorems in mechanics of materials containing cavities. Arch. Mech. 45, 1169–1181 (1995)

    MathSciNet  MATH  Google Scholar 

  47. V. Mityushev, Functional equations and its applications in mechanics of composites. Demonstratio Math. 30, 64–70 (1997)

    MathSciNet  Google Scholar 

  48. V. Mityushev, Transport properties of regular array of cylinders. ZAMM 77, 115–120 (1997)

    Article  MATH  Google Scholar 

  49. V. Mityushev, Steady heat conduction of the material with an array of cylindrical holes in the non-linear case. IMA J. Appl. Math. 61, 91–102 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. V. Mityushev, Exact solution of the \(\mathbb R\)-linear problem for a disk in a class of doubly periodic functions. J. Appl. Funct. Anal. 2, 115–127 (2007)

    Google Scholar 

  51. V.V. Mityushev, S.V. Rogosin, Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions. Theory and Applications. Monographs and Surveys in Pure and Applied Mathematics (Chapman & Hall/CRC, Boca Raton, 2000)

    Google Scholar 

  52. V. Mityushev, N. Rylko, Maxwell’s approach to effective conductivity and its limitations. Q. J. Mech. Appl. Math. 66, 241–251 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. A.B. Movchan, S. Guenneau, Split-ring resonators and localized modes. Phys. Rev. B 70, 125116 (2004)

    Article  Google Scholar 

  54. A.B. Movchan, N.V. Movchan, Ch.G. Poulton, Asymptotic Models of Fields in Dilute and Densely Packed Composites (World Scientific, London, 2002)

    Book  MATH  Google Scholar 

  55. A.B. Movchan, N.V. Movchan, R.C. McPhedran, Bloch–Floquet bending waves in perforated thin plates. Proc. Roy. Soc. London A463, 2505–2518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. V. Mityushev, Poincaré α-series for classical Schottky groups and its applications, in Analytic Number Theory, Approximation Theory, and Special Functions, ed. by G.V. Milovanović, M.Th. Rassias (Springer, Berlin, 2014), pp. 827–852

    Chapter  Google Scholar 

  57. E.S. Nascimento, M.E. Cruz, J. Bravo-Castillero, Calculation of the effective thermal conductivity of multiscale ordered arrays based on reiterated homogenization theory and analytical formulae. Int. J. Eng. Sci. 119, 205–216 (2017)

    Article  Google Scholar 

  58. V.Ya. Natanzon, On stresses in a tensioned plate with holes located in the chess order. Matematicheskii sbornik 42, 617–636 (1935) (in Russian)

    Google Scholar 

  59. N.A. Nicorovici, G.W. Milton, R.C. McPhedran, L.C. Botten, Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance. Opt. Express 15, 6314–6323 (2007)

    Article  Google Scholar 

  60. W. Parnell, I.D. Abrahams, Dynamic homogenization in periodic fibre reinforced media. Quasi-static limit for SH waves. Wave Motion 43, 474–498 (2006)

    Article  MATH  Google Scholar 

  61. W.T. Perrins, D.R. McKenzie, R.C. McPhedran, Transport properties of regular arrays of cylinders. Proc. Roy. Soc. London A369, 207–225 (1979)

    Article  MathSciNet  Google Scholar 

  62. Rayleigh, On the influence of obstacles arranged in rectangular order upon the properties of medium. Phil. Mag. 34, 481–502 (1892)

    Google Scholar 

  63. R. Rodriguez-Ramos, F.J. Sabina, R. Guinovart-Diaz, J. Bravo-Castillero, Closed-form expressions for the effective coefficients of a fibre-reinforced composite with transversely isotropic constituents – I. Elastic and square symmetry. Mech. Mater. 33, 223–235 (2001)

    MATH  Google Scholar 

  64. N. Rylko, Transport properties of a rectangular array of highly conducting cylinders. Proc Roy. Soc. London A472, 1–12 (2000)

    MathSciNet  MATH  Google Scholar 

  65. N. Rylko, Structure of the scalar field around unidirectional circular cylinders. J. Eng. Math. 464, 391–407 (2008)

    MathSciNet  MATH  Google Scholar 

  66. F.J. Sabina, J. Bravo-Castillero, R. Guinovart-Diaz, R. Rodriguez-Ramos, O.C. Valdiviezo-Mijangos, Overall behaviour of two-dimensional periodic composites. Int. J. Solids Struct. 39, 483–497 (2002)

    Article  MATH  Google Scholar 

  67. G.P. Sendeckyj, Multiple circular inclusion problems in longitudinal shear deformation. J. Elast. 1 83–86 (1971)

    Article  Google Scholar 

  68. A.B. Tayler, Mathematical Models in Applied Mechanics (Clarendon Press, Oxford, 2001)

    MATH  Google Scholar 

  69. Y. Wang, Y. Wang, Schwarz-type problem of nonhomogeneous Cauchy-Riemann equation on a triangle. J. Math. Anal. Appl. 377, 557–570 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  70. A. Weil, Elliptic Functions According to Eisenstein and Kronecker (Springer, Berlin, 1976)

    Book  MATH  Google Scholar 

  71. S. Yakubovich, P. Drygas, V. Mityushev, Closed-form evaluation of 2D static lattice sums. Proc. Roy. Soc. London A472, 20160510 (2016)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Authors thanks Dr Galina Starushenko for fruitful discussions and providing the working notes with the calculation data and figures presented in Supplement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Andrianov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andrianov, I., Mityushev, V. (2018). Exact and “Exact” Formulae in the Theory of Composites. In: Drygaś, P., Rogosin, S. (eds) Modern Problems in Applied Analysis. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-72640-3_2

Download citation

Publish with us

Policies and ethics