Skip to main content

Damage Control in Pediatric Patients

  • Chapter
  • First Online:
Damage Control in Trauma Care

Abstract

The concepts of damage control surgery and resuscitation have been known for many years, as have data affirming the advantages for adult patients. There has been no doubt that the application of these damage control resuscitation principles have led to improved success of non-operative management of solid organ injury, decreased multi-system organ failure, and improved mortality [1]. As of this writing, there has been no prospective randomized trial proving the benefit of damage control resuscitation in the pediatric patient. There are several challenges with such trials; primarily, the most common injuries are traumatic brain injury, and overall mortality is low. Death from hemorrhage is rare and precludes effective trials without broad multicenter participation over an extended time frame. It should be said, however, that when a therapy or intervention is proven to have benefit in adult patients, it should be considered applicable to the pediatric population unless there is compelling reason to believe that there are differences in the pediatric anatomy or physiology that would change the efficacy of the therapy or intervention. Such is the case with damage control surgery and resuscitation. The concept of limited crystalloid resuscitation; early, balanced blood component replacement; rapid correction of physiological derangements, including coagulopathy and inflammation; and source control surgery for bleeding and contamination should all be applicable in the pediatric patient based on the developing biology of the child.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shrestha B, Holcomb JB, Camp EA, Del Junco DJ, Cotton BA, Albarado R, Gill BS, Kozar RA, Kao LS, McNutt MK, Moore LJ, Love JD, Tyson GH 3rd, Adams PR, Khan S, Wade CE. Damage-control resuscitation increases successful nonoperative management rates and survival after severe blunt liver injury. J Trauma Acute Care Surg. 2015;78(2):336–41.

    Article  PubMed  Google Scholar 

  2. Centers for Disease Control. Web-based Injury Statistics Query and Reporting System (WISQARS). Atlanta, GA: US Department of Health and Human Services, 10 Leading Causes of Nonfatal Injury, United States; 2014. https://www.cdc.gov/injury/wisqars. Accessed 1 Dec 2016.

  3. Al-Hassani A, Abdulrahaman H, Afifi I, Almadani A, Al-Den A, Al-Kuwari A, Recicar J, Nabir S, Maull KI. Rib fracture patterns predict thoracic chest wall and abdominal solid organ injury. Am Surg. 2010;76(8):888–91.

    PubMed  Google Scholar 

  4. Rosenberg G, Bryant AK, Davis KA, Schuster KM. No breakpoint for mortality in pediatric rib fractures. J Trauma Acute Care Surg. 2016;80(3):427–32.

    Article  PubMed  Google Scholar 

  5. Andrew M, Paes B, Johnston M. Development of the hemostatic system in the neonate and young infant. Am J Pediatr Hematol Oncol. 1990;12(1):95–104.

    Article  CAS  PubMed  Google Scholar 

  6. Andrew M, Milner R, Johnston M, Mitchell L, Tollefsen DM, Castle V, Powers P. Development of the human coagulation system in the healthy premature infant. Blood. 1988;72(5):1651–7.

    PubMed  CAS  Google Scholar 

  7. Andrew M, Paes B, Milner R, Johnston M, Mitchell L, Tollefsen DM, Powers P. Development of the human coagulation system in the full-term infant. Blood. 1987;70(1):165–72.

    PubMed  CAS  Google Scholar 

  8. Andrew M, Vegh P, Johnston M, Bowker J, Ofosu F, Mitchell L. Maturation of the hemostatic system during childhood. Blood. 1992;80(8):1998–2005.

    PubMed  CAS  Google Scholar 

  9. Advanced Trauma Life Support (ATLS). American College of Surgeons’ Committee on Trauma, and International ATLS Working Group. 9th ed. Chicago, IL: The ATLS Subcommittee. 2012.

    Google Scholar 

  10. Christiaans SC, Duhachek-Stapelman AL, Russell RT, Lisco SJ, Kerby JD, Pittet JF. Coagulopathy after severe pediatric trauma. Shock. 2014;41(6):476–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liras IN, Cotton BA, Cardenas JC, Harting MT. Prevalence and impact of admission hyperfibrinolysis in severely injured pediatric patients. Surgery. 2015;158(3):812–8.

    Article  PubMed  Google Scholar 

  12. Leeper CM, Neal MD, McKenna C, Sperry J, Gaines BA. Abnormalities in fibrinolysis at the time of admission are associated with DVT, mortality and disability in a pediatric trauma population. J Trauma Acute Care Surg. 2017;82(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  13. Vogel AM, Radwanss ZA, Cox CS Jr, Cotton BA. Admission rapid thromboelastography delivers real-time “actionable” data in pediatric trauma. J Pediatr Surg. 2013;48(6):1371–6.

    Article  PubMed  Google Scholar 

  14. Hendrickson JE, Shaz BH, Pereira G, Atkins E, Johnson KK, Bao G, Easley KA, Josephson CD. Coagulopathy is prevalent and associated with adverse outcomes in transfused pediatric trauma patients. J Pediatr. 2012;160(2):204–9.

    Article  PubMed  Google Scholar 

  15. Navaratnam M, Ng A, Williams GD, Maeda K, Mendoza JM, Concepcion W, Hollander SA, Ramamoorthy C. Perioperative management of pediatric en-bloc combined heart-liver transplants: a case series review. Paediatr Anaesth. 2016;26(10):976–86.

    Article  PubMed  Google Scholar 

  16. Eckert MJ, Wertin TM, Tyner SD, Nelson DW, Izenberg S, Martin MJ. Tranexamic acid administration to pediatric trauma patients in a combat setting: the pediatric trauma and tranexamic acid study (PED-TRAX). J Trauma Acute Care Surg. 2014;77(6):852–8.

    Article  CAS  Google Scholar 

  17. Nishijima DK, Monuteaux MC, Faraoni D, Goobie SM, Lee L, Galante J, Holmes JF, Kuppermann N. Tranexamic acid use in United States Children’s Hospitals. J Emerg Med. 2016;50(6):868–74.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arkansas Children’s Hospital Clinical Laboratory: Massive Transfusions. ACH Policy and Procedures, November 2016.

    Google Scholar 

  19. Neff LP, Cannon JW, Morrison JJ, Edwards MJ, Spinella PC, Borgman MA. Clearly defining pediatric massive transfusion: cutting through the fog and friction with combat data. J Trauma Acute Care Surg. 2015;78(1):22–8.

    Article  PubMed  Google Scholar 

  20. Chidester SJ, Williams N, Wang W, Groner JI. A pediatric massive transfusion protocol. J Trauma Acute Care Surg. 2012;73(5):1273–7.

    Article  Google Scholar 

  21. Nosanov L, Inaba K, Okoye O, Resnick S, Upperman J, Shulman I, Rhee P, Demetriades D. The impact of blood product ratios in massively transfused pediatric trauma patients. Am J Surg. 2013;206(5):655–60.

    Article  PubMed  Google Scholar 

  22. Resources for Optimal Care of the Injured Patient. Chicago, IL: American College of Surgeons, Committee on Trauma. 2014. Print.

    Google Scholar 

  23. Pumberger W, Kohlhauser C, Mayr M, Pomberger G. Severe liver haemorrhage during laparotomy in very low birthweight infants. Acta Paediatr. 2002;91(11):1260–2.

    Article  CAS  PubMed  Google Scholar 

  24. Villalona GA, Mckee MA, Diefenbach KA. Damage control surgery in a <1 kg neonate: a brief report. Yale J Biol Med. 2013;86(3):385–7.

    PubMed  PubMed Central  Google Scholar 

  25. Talving P, Lustenberger T, Lam L, Inaba K, Mohseni S, Plurad D, Green DJ, Demetriades D. Coagulopathy after isolated severe traumatic brain injury in children. J Trauma. 2011;71(5):1205–10.

    Article  PubMed  Google Scholar 

  26. Harhangi BS, Kompanje EJ, Leebeek FW, Maas AI. Coagulation disorders after traumatic brain injury. Acta Neurochir. 2008;150(2):165–75. discussion 175

    Article  CAS  PubMed  Google Scholar 

  27. Rosenfeld JV. Damage control neurosurgery. Injury. 2004;35(7):655–0.

    Article  PubMed  Google Scholar 

  28. The 4th Edition of Guidelines for Management of Severe Traumatic Brain Injury. Campbell, CA: Brain Trauma Foundation; 2016.

    Google Scholar 

  29. Kochanek PM, Carney N, Adelson PD, Ashwal S, Bell MJ, Bratton S, Carson S, Chesnut RM, Ghajar J, Goldstein B, Grant GA, Kissoon N, Peterson K, Selden NR, Tasker RC, Tong KA, Vavilala MS, Wainwright MS, Warden CR. Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents—second edition. Pediatr Crit Care Med. 2012;13(Suppl 1):S1–82, Erratum in: Pediatr Crit Care Med. 2012 Mar;13(2):252.

    PubMed  Google Scholar 

  30. Mooney JF. The use of ‘damage control orthopedics’ techniques in children with segmental open fractures. J Pediatr Orthop B. 2012;21(5):400–3.

    Article  PubMed  Google Scholar 

  31. Flynn JM, Schwend RM. Management of pediatric femoral shaft fractures. J Am Acad Orthop Surg. 2004;12(5):347–59.

    Article  PubMed  Google Scholar 

  32. Richards JE, Matuszewski PE, Grififin SM, Koehler DM, Guillamondegui OD, O'Toole RV, Bosse MJ, Obremskey WT, Evans JM. The role of elevated lactate as a risk factor for pulmonary mortality after early fixation of femoral shaft fractures. J Orthop Trauma. 2016;30(6):312–8.

    Article  PubMed  Google Scholar 

  33. Crowl AC, Young JS, Kahler DM, Claridge JA, Chrzanowski DS, Pomphrey M. Occult hypoperfusion is associated with increased morbidity in patients undergoing early femur fracture fixation. J Trauma. 2000;48(2):260–7.

    Article  CAS  PubMed  Google Scholar 

  34. Kirkilas M, Notrica DM, Langlais CS, Muenzer JT, Zoldos J, Graziano K. Outcomes of arterial vascular extremity trauma in pediatric patients. J Pediatr Surg. 2016;51(11):1885–90.

    Article  PubMed  Google Scholar 

  35. Inaba K, Aksoy H, Seamon MJ, Marks JA, Duchesne J, Schroll R, Fox CJ, Pieracci FM, Moore EE, Joseph B, Haider AA, Harvin JA, Lawless RA, Cannon J, Holland SR, Demetriades D, Multicenter Shunt Study Group. Multicenter evaluation of temporary intravascular shunt use in vascular trauma. J Trauma Acute Care Surg. 2016;80(3):359–64; discussion 364–5.

    Article  PubMed  Google Scholar 

  36. Garlick J, Maxson T, Imamura M, Green J, Prodhan P. Differential lung ventilation and venovenous extracorporeal membrane oxygenation for traumatic bronchopleural fistula. Ann Thorac Surg. 2013;96(5):1859–60.

    Article  PubMed  Google Scholar 

  37. Cornfield DN. Acute respiratory distress syndrome in children: physiology and management. Curr Opin Pediatr. 2013;25(3):338–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Todd Maxson M.D., F.A.C.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Todd Maxson, R. (2018). Damage Control in Pediatric Patients. In: Duchesne, J., Inaba, K., Khan, M. (eds) Damage Control in Trauma Care. Springer, Cham. https://doi.org/10.1007/978-3-319-72607-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72607-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72606-9

  • Online ISBN: 978-3-319-72607-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics