Skip to main content

Solving Partial Differential Equations with Multiscale Radial Basis Functions

  • Chapter
  • First Online:
Book cover Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan

Abstract

The goal of this paper is to review, discuss and extend the current theory on multiscale radial basis functions for solving elliptic partial differential equations. Multiscale radial basis functions provide approximation spaces using different scales and shifts of a compactly supported, positive definite function in an orderly fashion. In this paper, both collocation and Galerkin approximation are described and analysed. To this end, first symmetric and non-symmetric recovery is discussed. Then, error estimates for both schemes are derived, though special emphasis is given to Galerkin approximation, since the current situation here is not as clear as in the case of collocation. We will distinguish between stationary and non-stationary multiscale approximation spaces and multilevel approximation schemes. For Galerkin approximation, we will establish error bounds in the stationary setting based upon Cea’s lemma showing that the approximation spaces are indeed rich enough. Unfortunately, convergence of a simple residual correction algorithm, which is often applied in this context to compute the approximation, can only be shown for a non-stationary multiscale approximation space.

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (1994)

    Book  Google Scholar 

  2. Buhmann, M.D.: Radial basis functions. In: Acta Numerica 2000, vol. 9, pp. 1–38. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Buhmann, M.D.: Radial Basis Functions. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  4. Chen, C.S., Ganesh, M., Golberg, M.A., Cheng, A.H.D.: Multilevel compact radial functions based computational schemes for some elliptic problems. Comput. Math. Appl. 43, 359–378 (2002)

    Article  MathSciNet  Google Scholar 

  5. Chernih, A., Le Gia, Q.T.: Multiscale methods with compactly supported radial basis functions for elliptic partial differential equations on bounded domains. ANZIAM J. (E) 54, C137–C152 (2012)

    Article  MathSciNet  Google Scholar 

  6. Chernih, A., Le Gia, Q.T.: Multiscale methods with compactly supported radial basis functions for the Stokes problem on bounded domains. Adv. Comput. Math. 42, 1187–1208 (2013)

    Article  MathSciNet  Google Scholar 

  7. Chernih, A., Le Gia, Q.T.: Multiscale methods with compactly supported radial basis functions for Galerkin approximation of elliptic PDEs. IMA J. Numer. Anal. 34, 569–591 (2014)

    Article  MathSciNet  Google Scholar 

  8. Farrell, P., Wendland, H.: RBF multiscale collocation for second order elliptic boundary value problems. SIAM J. Numer. Anal. 51, 2403–2425 (2013)

    Article  MathSciNet  Google Scholar 

  9. Farrell, P., Gillow, K., Wendland, H.: Multilevel interpolation of divergence-free vector fields. IMA J. Numer. Anal. 37, 332–353 (2017)

    Article  MathSciNet  Google Scholar 

  10. Fasshauer, G.E.: Solving partial differential equations by collocation with radial basis functions. In: Méhauté, A.L., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 131–138. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  11. Fasshauer, G.E.: Solving differential equations with radial basis functions: multilevel methods and smoothing. Adv. Comput. Math. 11, 139–159 (1999)

    Article  MathSciNet  Google Scholar 

  12. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific, Singapore (2007)

    Book  Google Scholar 

  13. Fasshauer, G.E., Jerome, J.W.: Multistep approximation algorithms: improved convergence rates through postconditioning with smoothing kernels. Adv. Comput. Math. 10, 1–27 (1999)

    Article  MathSciNet  Google Scholar 

  14. Ferrari, S., Maggioni, M., Borhese, N.A.: Multiscale approximation with hierarchical radial basis functions networks. IEEE Trans. Neural Netw. 15, 178–188 (2004)

    Article  Google Scholar 

  15. Floater, M.S., Iske, A.: Multistep scattered data interpolation using compactly supported radial basis functions. J. Comput. Appl. Math. 73, 65–78 (1996)

    Article  MathSciNet  Google Scholar 

  16. Fornberg, B., Flyer, N.: Solving PDEs with radial basis functions. In: Iserles, A. (ed.) Acta Numerica, vol. 24, pp. 215–258. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  17. Franke, C., Schaback, R.: Convergence order estimates of meshless collocation methods using radial basis functions. Adv. Comput. Math. 8, 381–399 (1998)

    Article  MathSciNet  Google Scholar 

  18. Franke, C., Schaback, R.: Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comput. 93, 73–82 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Giesl, P., Wendland, H.: Meshless collocation: Error estimates with application to dynamical systems. SIAM J. Numer. Anal. 45, 1723–1741 (2007)

    Article  MathSciNet  Google Scholar 

  20. Hales, S.J., Levesley, J.: Error estimates for multilevel approximation using polyharmonic splines. Numer. Algoritm. 30, 1–10 (2002)

    Article  MathSciNet  Google Scholar 

  21. Heuer, N., Tran, T.: A mixed method for Dirichlet problems with radial basis functions. Comput. Math. Appl. 66, 2045–2055 (2013)

    Article  MathSciNet  Google Scholar 

  22. Hon, Y.C., Schaback, R.: On unsymmetric collocation by radial basis functions. J. Appl. Math. Comput. 119, 177–186 (2001)

    Article  MathSciNet  Google Scholar 

  23. Le Gia, Q.T., Wendland, H.: Data compression on the sphere using multiscale radial basis functions. Adv. Comput. Math. 40, 923–943 (2014)

    Article  MathSciNet  Google Scholar 

  24. Le Gia, Q.T., Sloan, I., Wendland, H.: Multiscale analysis in Sobolev spaces on the sphere. SIAM J. Numer. Anal. 48, 2065–2090 (2010)

    Article  MathSciNet  Google Scholar 

  25. Le Gia, Q.T., Sloan, I., Wendland, H.: Multiscale approximation for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere. Appl. Comput. Harmon. Anal. 32, 401–412 (2012)

    Article  MathSciNet  Google Scholar 

  26. Le Gia, Q.T., Sloan, I., Wendland, H.: Multiscale RBF collocation for solving PDEs on spheres. Numer. Math. 121, 99–125 (2012)

    Article  MathSciNet  Google Scholar 

  27. Le Gia, Q.T., Sloan, I.H., Wendland, H.: Zooming from global to local: a multiscale RBF approach. Adv. Comput. Math. 43, 581–606 (2017)

    Article  MathSciNet  Google Scholar 

  28. Li, M., Cao, F.: Multiscale interpolation on the sphere: convergence rate and inverse theorem. Appl. Math. Comput. 263, 134–150 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Morton, T.M., Neamtu, M.: Error bounds for solving pseudodifferential equatons on spheres by collocation with zonal kernels. J. Approx. Theory 114, 242–268 (2002)

    Article  MathSciNet  Google Scholar 

  30. Narcowich, F.J., Schaback, R., Ward, J.D.: Multilevel interpolation and approximation. Appl. Comput. Harmon. Anal. 7, 243–261 (1999)

    Article  MathSciNet  Google Scholar 

  31. Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions. Constr. Approx. 24, 175–186 (2006)

    Article  MathSciNet  Google Scholar 

  32. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of unity implicits. ACM Trans. Graph. 22, 463–470 (2003)

    Article  Google Scholar 

  33. Ron, A.: The L 2-approximation orders of principal shift-invariant spaces generated by a radial basis function. In: Braess, D., et al. (eds.) Numerical Methods in Approximation Theory. vol. 9: Proceedings of the Conference Held in Oberwolfach, Germany, 24–30 Nov 1991. International Series of Numerican Mathematics, vol. 105, pp. 245–268. Birkhäuser, Basel (1992)

    Chapter  Google Scholar 

  34. Schaback, R.: Creating surfaces from scattered data using radial basis functions. In: Dæhlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces, pp. 477–496. Vanderbilt University Press, Nashville (1995)

    MATH  Google Scholar 

  35. Schaback, R., Wendland, H.: Kernel techniques: from machine learning to meshless methods. In: Iserles, A. (ed.) Acta Numerica, vol. 15, pp. 543–639. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  36. Townsend, A., Wendland, H.: Multiscale analysis in Sobolev spaces on bounded domains with zero boundary values. IMA J. Numer. Anal. 33, 1095–1114 (2013)

    Article  MathSciNet  Google Scholar 

  37. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MathSciNet  Google Scholar 

  38. Wendland, H.: Numerical solutions of variational problems by radial basis functions. In: Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory IX, vol. 2: Computational Aspects, pp. 361–368. Vanderbilt University Press, Nashville (1998)

    Google Scholar 

  39. Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  40. Wendland, H.: On the stability of meshless symmetric collocation for boundary value problems. BIT 47, 455–468 (2007)

    Article  MathSciNet  Google Scholar 

  41. Wendland, H.: Multiscale analysis in Sobolev spaces on bounded domains. Numer. Math. 116, 493–517 (2010)

    Article  MathSciNet  Google Scholar 

  42. Wendland, H.: Multiscale radial basis functions. In: Pesenson, I., Gia, Q.T.L., Mayeli, A., Mhaskar, H., Zhou, D.X. (eds.) Frames and Other Bases in Abstract and Function Spaces – Novel Methods in Harmonic Analysis, vol. 1, pp. 265–299. Birkhäuser, Cham (2017)

    Google Scholar 

  43. Wu, Z.: Compactly supported positive definite radial functions. Adv. Comput. Math. 4, 283–292 (1995)

    Article  MathSciNet  Google Scholar 

  44. Xu, B., Lu, S., Zhong, M.: Multiscale support vector regression method in Sobolev spaces on bounded domains. Appl. Anal. 94, 548–569 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Wendland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wendland, H. (2018). Solving Partial Differential Equations with Multiscale Radial Basis Functions. In: Dick, J., Kuo, F., Woźniakowski, H. (eds) Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan. Springer, Cham. https://doi.org/10.1007/978-3-319-72456-0_55

Download citation

Publish with us

Policies and ethics