Skip to main content

Quantum Lattice Boltzmann Study of Random-Mass Dirac Fermions in One Dimension

  • Chapter
  • First Online:
Book cover Many-body Approaches at Different Scales

Abstract

We study the time evolution of quenched random-mass Dirac fermions in one dimension by quantum lattice Boltzmann simulations. For nonzero noise strength, the diffusion of an initial wave packet stops after a finite time interval, reminiscent of Anderson localization. However, instead of exponential localization we find algebraically decaying tails in the disorder-averaged density distribution. These qualitatively match a \( x^{-3/2}\) decay, which has been predicted by analytic calculations based on zero-energy solutions of the Dirac equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.W. Groth, M. Wimmer, A.R. Akhmerov, J. Tworzydło, C.W.J. Beenakker, Phys. Rev. Lett. 103, 196805 (2009). https://doi.org/10.1103/PhysRevLett.103.196805

  2. K. Kobayashi, T. Ohtsuki, K.I. Imura, I.F. Herbut, Phys. Rev. Lett. 112, 016402 (2014). https://doi.org/10.1103/PhysRevLett.112.016402

  3. T. Morimoto, A. Furusaki, C. Mudry, Phys. Rev. B 91, 235111 (2015). https://doi.org/10.1103/PhysRevB.91.235111

  4. D. Bagrets, A. Altland, A. Kamenev, Phys. Rev. Lett. 117, 196801 (2016). https://doi.org/10.1103/PhysRevLett.117.196801

  5. S. Seo, X. Lu, J.X. Zhu, R.R. Urbano, N. Curro, E.D. Bauer, V.A. Sidorov, L.D. Pham, T. Park, Z. Fisk, J.D. Thompson, Nat. Phys. 10, 120 (2014). https://doi.org/10.1038/nphys2820

  6. P. Yunker, Z. Zhang, A.G. Yodh, Phys. Rev. Lett. 104, 015701 (2010). https://doi.org/10.1103/PhysRevLett.104.015701

  7. P.W. Anderson, Phys. Rev. 109, 1492 (1958). https://doi.org/10.1103/PhysRev.109.1492

  8. J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Nature 453, 891 (2008). https://doi.org/10.1038/nature07000

  9. L. Balents, M.P.A. Fisher, Phys. Rev. B 56, 12970 (1997). https://doi.org/10.1103/PhysRevB.56.12970

  10. D.G. Shelton, A.M. Tsvelik, Phys. Rev. B 57, 14242 (1998). https://doi.org/10.1103/PhysRevB.57.14242

  11. V.V. Mkhitaryan, M.E. Raikh, Phys. Rev. Lett. 106, 256803 (2011). https://doi.org/10.1103/PhysRevLett.106.256803

  12. Y.G. Sinai, Theory Probab. Appl. 27, 256 (1982). https://doi.org/10.1137/1127028

  13. J.P. Bouchaud, A. Comtet, A. Georges, P. Le Doussal, Ann. Phys. 201, 285 (1990). https://doi.org/10.1016/0003-4916(90)90043-N

  14. A. Comtet, D.S. Dean, J. Phys. A 31, 8595 (1998). https://doi.org/10.1088/0305-4470/31/43/004

  15. A. Yosprakob, S. Suwanna, arXiv:1601.03827 (2016)

  16. M. Steiner, M. Fabrizio, A.O. Gogolin, Phys. Rev. B 57, 8290 (1998). https://doi.org/10.1103/PhysRevB.57.8290

  17. S. Succi, R. Benzi, Physica D 69, 327 (1993). https://doi.org/10.1016/0167-2789(93)90096-J

  18. S. Palpacelli, S. Succi, Phys. Rev. E 77, 066708 (2008). https://doi.org/10.1103/PhysRevE.77.066708

  19. F. Fillion-Gourdeau, H.J. Herrmann, M. Mendoza, S. Palpacelli, S. Succi, Phys. Rev. Lett. 111, 160602 (2013). https://doi.org/10.1103/PhysRevLett.111.160602

  20. P.J. Dellar, D. Lapitski, S. Palpacelli, S. Succi, Phys. Rev. E 83, 046706 (2011). https://doi.org/10.1103/PhysRevE.83.046706

  21. S. Succi, EPL 109, 50001 (2015). https://doi.org/10.1209/0295-5075/109/50001

Download references

Acknowledgements

This work is dedicated to Professor Norman H. March on the occasion of his 90th birthday, with our warmest congratulations on an outstanding career and best wishes for more to come in the future.

C.M. acknowledges support from the Alexander von Humboldt foundation via a Feodor Lynen fellowship, as well as support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515. A.K. was supported by NSF grant DMR-1608238. S.S. was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 306357 (ERC Starting Grant “NANO-JETS”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Succi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mendl, C.B., Palpacelli, S., Kamenev, A., Succi, S. (2018). Quantum Lattice Boltzmann Study of Random-Mass Dirac Fermions in One Dimension. In: Angilella, G., Amovilli, C. (eds) Many-body Approaches at Different Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-72374-7_26

Download citation

Publish with us

Policies and ethics