Skip to main content

Laboratory Testing in Thyroid Disorders

  • Chapter
  • First Online:
Book cover The Thyroid and Its Diseases

Abstract

For thyroid function evaluation, thyrotropin (TSH) is the usual starting point. TSH shows an exponential response to changing peripheral thyroid hormone levels, thereby providing high clinical detection sensitivity. Thyroxine (T4) or triiodothyronine (T3) is frequently measured alongside, mostly as free hormones (FT4 and FT3), to assess disease severity or treatment response. Some diseases require additional testing to determine the cause of observed abnormalities or to clarify contradictory results of TSH and T4/T3 testing. Thyroid autoantibody testing is important in this context.

Testing for structural thyroid disease centers on tumor markers, mainly thyroglobulin (Tg), calcitonin, and carcinoembryonic antigen, all of which are primarily used for follow-up. Tg immunoassays are not infrequently compromised by anti-Tg autoantibody interferences, which can be partially overcome by mass spectrometry (MS) Tg measurements.

Thyroid function tests and thyroid tumor markers have several limitations, which include (1) inaccurate immunoassay results in a subset of patients due to interferences by binding proteins, autoantibodies, heterophile antibodies, anti-reagent antibodies, or various chemicals, (2) some degree of compromised diagnostic performance due to suboptimal assay precision and inadequate reference ranges for almost all assays, and (3) poor comparability of results obtained by different assays for the same analyte.

These problems can potentially be solved by increased use of physicochemical methods (e.g., dialysis and MS), assay harmonization, improved reference ranges, and utilization of patient-specific reference intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grebe SKG, Kahaly GJ. Laboratory testing in hyperthyroidism. Am J Med. 2012;125:S2.

    Article  PubMed  Google Scholar 

  2. Miot F, Dupuy C, Dumont J, Rousselt B. Thyroid hormone synthesis and secretion. In: DeGroot L, editor. Thyroid disease manager. South Dartmouth: Thyroidmanager.org; 2015.

    Google Scholar 

  3. Dedieu A, Gaillard J-C, Pourcher T, Darrouzet E, Armengaud J. Revisiting iodination sites in thyroglobulin with an organ-oriented shotgun strategy. J Biol Chem. 2011;286:259–69.

    Article  CAS  PubMed  Google Scholar 

  4. Laurberg P. Thyroxine and 3,5,3′-triiodothyronine content of thyroglobulin in thyroid needle aspirates in hyperthyroidism and hypothyroidism. J Clin Endocrinol Metabol. 1987;64:969–74.

    Article  CAS  Google Scholar 

  5. Grebe SKG. Soluble thyroid tumor markers—old and new challenges and potential solutions. N Z J Med Lab Sci. 2013;67:76–87.

    Google Scholar 

  6. Hillier AP, Balfour WE. Human thyroxine-binding globulin and thyroxine-binding pre-albumin: dissociation rates. J Physiol. 1971;217:625–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schussler GC. The thyroxine-binding proteins. Thyroid. 2000;10:141–9.

    Article  CAS  PubMed  Google Scholar 

  8. Refetoff S. Thyroid hormone serum transport proteins. In: DeGroot L, editor. Thyroid disease manager. South Dartmouth: Thyroidmanager.org, Endicrine Education Inc.; 2015.

    Google Scholar 

  9. Visser JW, Friesema ECH, Visser TJ. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol. 2011;25:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sandler B, Webb P, Apriletti JW, et al. Thyroxine-thyroid hormone receptor interactions. J Biol Chem. 2004;279:55801–8.

    Article  CAS  PubMed  Google Scholar 

  11. Brent GA. Mechanisms of thyroid hormone action. J Clin Investig. 2012;122:3035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Courtin F, Zrouri H, Lamirand A, et al. Thyroid hormone deiodinases in the central and peripheral nervous system. Thyroid. 2005;15:931–42.

    Article  CAS  PubMed  Google Scholar 

  13. Dentice M, Salvatore D. Local impact of thyroid hormone inactivation: deiodinases: the balance of thyroid hormone. J Endocrinol. 2011;209:273–82.

    Article  CAS  PubMed  Google Scholar 

  14. Larsen PR, Zavacki AM. Role of the iodothyronine deiodinases in the physiology and pathophysiology of thyroid hormone action. Eur Thyroid J. 2012;1:232–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gereben B, McAninch EA, Ribeiro MO, Bianco AC. Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol. 2015;11:642–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sawicki B. Evaluation of the role of mammalian thyroid parafollicular cells. Acta Histochem. 1995;97:389–99.

    Article  CAS  PubMed  Google Scholar 

  17. Hirsch PF, Baruch H. Is calcitonin an important physiological substance? Endocrine. 2003;21:201–8.

    Article  CAS  PubMed  Google Scholar 

  18. Quarles LD. Extracellular calcium-sensing receptors in the parathyroid gland, kidney, and other tissues. Curr Opin Nephrol Hypertens. 2003;12:349–55.

    Article  CAS  PubMed  Google Scholar 

  19. Midgley JEM, Hoermann R, Larisch R, Dietrich JW. Physiological states and functional relation between thyrotropin and free thyroxine in thyroid health and disease: in vivo and in silico data suggest a hierarchical model. J Clin Pathol. 2013;66:335–42.

    Article  CAS  PubMed  Google Scholar 

  20. Sakai H, Nagao H, Sakurai M, et al. Correlation between serum levels of 3,3′,5′-triiodothyronine and thyroid hormones measured by liquid chromatography-tandem mass spectrometry and immunoassay. PLoS One. 2015;10:e0138864.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Rafferty B, Gaines-Das RE. Report of an international collaborative study of the proposed 3rd international standard for thyroid-stimulating hormone, human, for immunoassay. In: World Health Organization, editor. Endocrinological substances, January 5. 2016th ed. Geneva: World Health Organization; 2003. p. 1–25.

    Google Scholar 

  22. Estrada JM, Soldin D, Buckey TM, Burman KD, Soldin OP. Thyrotropin isoforms: implications for thyrotropin analysis and clinical practice. Thyroid. 2014;24:411–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schaefer S, Hassa PO, Sieber-Ruckstuhl NS, et al. Characterization of recombinant human and bovine thyroid-stimulating hormone preparations by mass spectrometry and determination of their endotoxin content. BMC Vet Res. 2013;9:1–7.

    Article  CAS  Google Scholar 

  24. Martel J, Despres N, Ahnadi CE, et al. Comparative multicentre study of a panel of thyroid tests using different automated immunoassay platforms and specimens at high risk of antibody interference. Clin Chem Lab Med. 2000;38:785–93.

    Article  CAS  PubMed  Google Scholar 

  25. d’Herbomez M, Forzy G, Gasser F, Massart C, Beaudonnet A, Sapin R. Clinical evaluation of nine free thyroxine assays: persistent problems in particular populations. Clin Chem Lab Med. 2003;41:942–7.

    PubMed  Google Scholar 

  26. Thienpont LM, Van Uytfanghe K, Beastall G, et al. Report of the IFCC working group for standardization of thyroid function tests; part 1: thyroid-stimulating hormone. Clin Chem. 2010;56:902–11.

    Article  CAS  PubMed  Google Scholar 

  27. Thienpont LM, Van Uytfanghe K, Beastall G, et al. Report of the IFCC working group for standardization of thyroid function tests; part 2: free thyroxine and free triiodothyronine. Clin Chem. 2010;56:912–20.

    Article  CAS  PubMed  Google Scholar 

  28. Giovannini S, Zucchelli GC, Iervasi G, et al. Multicentre comparison of free thyroid hormones immunoassays: the immunocheck study. Clin Chem Lab Med. 2011;49:1669–76.

    Article  CAS  PubMed  Google Scholar 

  29. Sapin R, d'Herbomez M. Free thyroxine measured by equilibrium dialysis and nine immunoassays in sera with various serum thyroxine-binding capacities. Clin Chem. 2003;49:1531–5.

    Article  CAS  PubMed  Google Scholar 

  30. Jonklaas J, Sathasivam A, Wang H, Gu J, Burman KD, Soldin SJ. Total and free thyroxine and triiodothyronine: measurement discrepancies, particularly in inpatients. Clin Biochem. 2014;47:1272–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grebe SKG. Diagnosis and management of thyroid carcinoma: a focus on serum thyroglobulin. Expert Rev Endocrinol Metab. 2009;4:25–43.

    Article  CAS  Google Scholar 

  32. Tate J, Ward G. Interferences in immunoassay. Clin Biochem Rev. 2004;25:105–20.

    PubMed  PubMed Central  Google Scholar 

  33. Kwok JS-S, Chan IH-S, Chan MH-M. Biotin interference on TSH and free thyroid hormone measurement. Pathology. 2012;44:278–80.

    Article  CAS  PubMed  Google Scholar 

  34. Schiettecatte J, Anckaert E, Smitz J. Interferences in immunoassays. In: Chiu NHL, Christopoulos TK, editors. Advances in immunoassay technology. Rijeka: InTech; 2012. p. 45–62.

    Google Scholar 

  35. Bolstad N, Warren DJ, Nustad K. Heterophilic antibody interference in immunometric assays. Best Pract Res Clin Endocrinol Metab. 2013;27:647–61.

    Article  CAS  PubMed  Google Scholar 

  36. Gessl A, Blueml S, Bieglmayer C, Marculescu R. Anti-ruthenium antibodies mimic macro-TSH in electrochemiluminescent immunoassay. Clin Chem Lab Med. 2014;52:1589–94.

    Article  CAS  PubMed  Google Scholar 

  37. Minkovsky A, Lee MN, Dowlatshahi M, et al. High dose biotin treatment for secondary progressive multiple sclerosis may interfere with thyroid assays. AACE Clin Case Rep. 2016;2(4):e370–3.

    Article  PubMed  Google Scholar 

  38. Hassan-Smith Z, Cooper MS. Overview of the endocrine response to critical illness: how to measure it and when to treat. Best Pract Res Clin Endocrinol Metab. 2011;25:705–17.

    Article  CAS  PubMed  Google Scholar 

  39. Mebis L, Van den Berghe G. Thyroid axis function and dysfunction in critical illness. Best Pract Res Clin Endocrinol Metab. 2011;25:745–57.

    Article  CAS  PubMed  Google Scholar 

  40. Ross DS. Thyroid function in nonthyroidal illness. In: Post TW, Mulder JE, Cooper DS, editors. UpToDate; 2015.

    Google Scholar 

  41. Luongo C, Trivisano L, Alfano F, Salvatore D. Type 3 deiodinase and consumptive hypothyroidism: a common mechanism for a rare disease. Front Endocrinol. 2013;4:115.

    Article  Google Scholar 

  42. Verloop H, Dekkers OM, Peeters RP, Schoones JW, Smit JWA. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans. Eur J Endocrinol. 2014;171:R123–R35.

    Article  CAS  PubMed  Google Scholar 

  43. Taylor PN, Peeters R, Dayan CM. Genetic abnormalities in thyroid hormone deiodinases. Curr Opin Endocrinol Diabetes Obes. 2015;22:402–6.

    Article  CAS  PubMed  Google Scholar 

  44. Chopra IJ. An assessment of daily production and significance of thyroidal secretion of 3, 3′, 5′-triiodothyronine (reverse T3) in man. J Clin Investig. 1976;58:32–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Elisei R. Routine serum calcitonin measurement in the evaluation of thyroid nodules. Best Pract Res Clin Endocrinol Metab. 2008;22:941–53.

    Article  CAS  PubMed  Google Scholar 

  46. Costante G, Durante C, Francis Z, Schlumberger M, Filetti S. Determination of calcitonin levels in C-cell disease: clinical interest and potential pitfalls. Nat Clin Pract Endocrinol Metab. 2009;5:35–44.

    Article  CAS  PubMed  Google Scholar 

  47. Laure Giraudet A, Al Ghulzan A, Aupérin A, et al. Progression of medullary thyroid carcinoma: assessment with calcitonin and carcinoembryonic antigen doubling times. Eur J Endocrinol. 2008;158:239–46.

    Article  PubMed  CAS  Google Scholar 

  48. Gawlik T, d’Amico A, Szpak-Ulczok S, et al. The prognostic value of tumor markers doubling times in medullary thyroid carcinoma—preliminary report. Thyroid Res. 2010;3:1–5.

    Article  Google Scholar 

  49. Trimboli P, Giovanella L. Serum calcitonin negative medullary thyroid carcinoma: a systematic review of the literature. Clin Chem Lab Med. 2015;53:1507–14. https://doi.org/10.15/cclm-2015-0058

    Article  CAS  PubMed  Google Scholar 

  50. Netzel BC, Grebe SKG, Carranza Leon BG, et al. Thyroglobulin (Tg) testing revisited: Tg assays, TgAb assays, and correlation of results with clinical outcomes. J Clin Endocrinol Metab. 2015;100:E1074–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Netzel BC, Grant RP, Hoofnagle AN, Rockwood AL, Shuford CM, Grebe SKG. First steps toward harmonization of LC-MS/MS thyroglobulin assays. Clin Chem. 2016;62:297–9.

    Article  CAS  PubMed  Google Scholar 

  52. Miyauchi A, Kudo T, Miya A, et al. Prognostic impact of serum thyroglobulin doubling-time under thyrotropin suppression in patients with papillary thyroid carcinoma who underwent total thyroidectomy. Thyroid. 2011;21:707–16. https://doi.org/10.1089/thy.2010.0355. Epub 2011 Jun 7

    Article  PubMed  Google Scholar 

  53. Haugen BR, Alexander EK, Bible KC, et al. American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;26:1–133.

    Article  Google Scholar 

  54. Giovanella L, Clark PM, Chiovato L, et al. Diagnosis of endocrine disease: thyroglobulin measurement using highly sensitive assays in patients with differentiated thyroid cancer: a clinical position paper. Eur J Endocrinol. 2014;171:R33–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Spencer C, Fatemi S. Thyroglobulin antibody (TgAb) methods—strengths, pitfalls and clinical utility for monitoring TgAb-positive patients with differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2013;27:701–12.

    Article  CAS  PubMed  Google Scholar 

  56. Kushnir MM, Rockwood AL, Roberts WL, Abraham D, Hoofnagle AN, Meikle AW. Measurement of thyroglobulin by liquid chromatography–tandem mass spectrometry in serum and plasma in the presence of antithyroglobulin autoantibodies. Clin Chem. 2013;59:982–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Algeciras-Schimnich A, Preissner CM, Theobald JP, Finseth MS, Grebe SKG. Procalcitonin: a marker for the diagnosis and follow-up of patients with medullary thyroid carcinoma. J Clin Endocrinol Metab. 2009;94:861–8.

    Article  CAS  PubMed  Google Scholar 

  58. Trimboli P, Seregni E, Treglia G, Alevizaki M, Giovanella L. Procalcitonin for detecting medullary thyroid carcinoma: a systematic review. Endocr Relat Cancer. 2015;22:R157–R64.

    Article  CAS  PubMed  Google Scholar 

  59. Leschik JJ, Diana T, Olivo PD, et al. Analytical performance and clinical utility of a bioassay for thyroid-stimulating immunoglobulins. Am J Clin Pathol. 2013;139:192–200. https://doi.org/10.1309/AJCPZUT7CNUEU7OP.

    Article  CAS  PubMed  Google Scholar 

  60. Giuliani C, Saji M, Bucci I, Napolitano G. Bioassays for TSH receptor autoantibodies, from FRTL-5 cells to TSH receptor–LH/CG receptor chimeras: the contribution of Leonard D. Kohn. Front Endocrinol. 2016;7:103.

    Article  Google Scholar 

  61. Latif R, Ali MR, Mezei M, Davies TF. Transmembrane domains of attraction on the TSH receptor. Endocrinology. 2015;156:488–98.

    Article  PubMed  CAS  Google Scholar 

  62. La'ulu SL, Slev PR, Roberts WL. Performance characteristics of 5 automated thyroglobulin autoantibody and thyroid peroxidase autoantibody assays. Clin Chim Acta. 2007;376:88–95.

    Article  CAS  PubMed  Google Scholar 

  63. Massart C, Sapin R, Gibassier J, Agin A, d'Herbomez M. Intermethod variability in TSH-receptor antibody measurement: implication for the diagnosis of graves disease and for the follow-up of graves ophthalmopathy. Clin Chem. 2009;55:183–6.

    Article  CAS  PubMed  Google Scholar 

  64. Browning MC, Ford RP, Callaghan SJ, Fraser CG. Intra- and interindividual biological variation of five analytes used in assessing thyroid function: implications for necessary standards of performance and the interpretation of results. Clin Chem. 1986;32:962–6.

    CAS  PubMed  Google Scholar 

  65. Andersen S, Pedersen KM, Bruun NH, Laurberg P. Narrow individual variations in serum T(4) and T(3) in normal subjects: a clue to the understanding of subclinical thyroid disease. J Clin Endocrinol Metab. 2002;87:1068–72.

    Article  CAS  PubMed  Google Scholar 

  66. Andersen S, Bruun NH, Pedersen KM, Laurberg P. Biologic variation is important for interpretation of thyroid function tests. Thyroid. 2003;13:1069–78.

    Article  CAS  PubMed  Google Scholar 

  67. Ankrah-Tetteh T, Wijeratne S, Swaminathan R. Intraindividual variation in serum thyroid hormones, parathyroid hormone and insulin-like growth factor-1. Ann Clin Biochem. 2008;45:167–9.

    Article  CAS  PubMed  Google Scholar 

  68. Erden G, Barazi AO, Tezcan G, Yildirimkaya M. Biological variation and reference change values of TSH, free T3, and free T4 levels in serum of healthy Turkish individuals. Turk J Med Sci. 2008;38:153–8.

    CAS  Google Scholar 

  69. Boas M, Forman JL, Juul A, et al. Narrow intra-individual variation of maternal thyroid function in pregnancy based on a longitudinal study on 132 women. Eur J Endocrinol. 2009;161:903–10.

    Article  CAS  PubMed  Google Scholar 

  70. Hubner U, Englisch C, Werkmann H, et al. Continuous age-dependent reference ranges for thyroid hormones in neonates, infants, children and adolescents established using the ADVIA centaur analyzer. Clin Chem Lab Med. 2002;40:1040–7.

    Article  CAS  PubMed  Google Scholar 

  71. La’ulu SL, Roberts WL. Second-trimester reference intervals for thyroid tests: the role of ethnicity. Clin Chem. 2007;53:1658–64.

    Article  PubMed  CAS  Google Scholar 

  72. Friis-Hansen L, Hilsted L. Reference intervals for thyreotropin and thyroid hormones for healthy adults based on the NOBIDA material and determined using a modular E170. Clin Chem Lab Med. 2008;46:1305–12.

    Article  CAS  PubMed  Google Scholar 

  73. Laurberg P, Andersen S, Carle A, Karmisholt J, Knudsen N, Pedersen IB. The TSH upper reference limit: where are we at? Nat Rev Endocrinol. 2011;7:232–9.

    Article  CAS  PubMed  Google Scholar 

  74. Deary M, Buckey T, Soldin OP. TSH—clinical aspects of its use in determining thyroid disease in the elderly how does it impact the practice of medicine in aging? Adv Pharmacoepidemiol Drug Saf. 2012;1:9369.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fan J-X, Han M, Tao J, et al. Reference intervals for common thyroid function tests, during different stages of pregnancy in Chinese women. Chin Med J. 2013;126:2710–4.

    CAS  PubMed  Google Scholar 

  76. Fontes R, Coeli CR, Aguiar F, Vaisman M. Reference interval of thyroid stimulating hormone and free thyroxine in a reference population over 60 years old and in very old subjects (over 80 years): comparison to young subjects. Thyroid Res. 2013;6:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Ichihara K, Ceriotti F, Kazuo M, et al. The Asian project for collaborative derivation of reference intervals: (2) results of non-standardized analytes and transference of reference intervals to the participating laboratories on the basis of cross-comparison of test results. Clin Chem Lab Med. 2013;51:1443–57.

    CAS  PubMed  Google Scholar 

  78. Magri F, Muzzoni B, Cravello L, et al. Thyroid function in physiological aging and in centenarians: possible relationships with some nutritional markers. Metabolism. 2002;51:105–9.

    Article  CAS  PubMed  Google Scholar 

  79. Bailey D, Colantonio D, Kyriakopoulou L, et al. Marked biological variance in endocrine and biochemical markers in childhood: establishment of pediatric reference intervals using healthy community children from the CALIPER cohort. Clin Chem. 2013;59:1393–405.

    Article  CAS  PubMed  Google Scholar 

  80. Perich C, Minchinela J, Ricos C, et al. Biological variation database: structure and criteria used for generation and update. Clin Chem Lab Med. 2015;53:299–305. https://doi.org/10.1515/cclm-2014-0739.

    Article  CAS  PubMed  Google Scholar 

  81. Lytton SD, Ponto KA, Kanitz M, Matheis N, Kohn LD, Kahaly GJ. A novel thyroid stimulating immunoglobulin bioassay is a functional Indicator of activity and severity of graves’ orbitopathy. J Clin Endocrinol Metabol. 2010;95:2123–31.

    Article  CAS  Google Scholar 

  82. Barbesino G, Tomer Y. Clinical utility of TSH receptor antibodies. J Clin Endocrinol Metabol. 2013;98:2247–55.

    Article  CAS  Google Scholar 

  83. The American Thyroid Association Taskforce on Thyroid Disease During Pregnancy and Postpartum, Stagnaro-Green A, et al. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid. 2011;21:1081–125.

    Article  PubMed Central  Google Scholar 

  84. Groot LD, Abalovich M, Alexander EK, et al. Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metabol. 2012;97:2543–65.

    Article  CAS  Google Scholar 

  85. Batra CM. Fetal and neonatal thyrotoxicosis. Indian J Endocrinol Metab. 2013;17:S50–S4.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jordan V, Grebe SK, Cooke RR, et al. Acidic isoforms of chorionic gonadotrophin in European and Samoan women are associated with hyperemesis gravidarum and may be thyrotrophic. Clin Endocrinol. 1999;50:619–27.

    Article  CAS  Google Scholar 

  87. Labadzhyan A, Brent GA, Hershman JM, Leung AM. Thyrotoxicosis of pregnancy. J Clin Transl Endocrinol. 2014;1(4):140.

    PubMed  PubMed Central  Google Scholar 

  88. Rodien P, Brémont C, Sanson M-LR, et al. Familial gestational hyperthyroidism caused by a mutant thyrotropin receptor hypersensitive to human chorionic gonadotropin. N Engl J Med. 1998;339:1823–6.

    Article  CAS  PubMed  Google Scholar 

  89. Lazarus JH. Thyroid disease in pregnancy and childhood. Minerva Endocrinol. 2005;30:71–87.

    CAS  PubMed  Google Scholar 

  90. Cansu A, Serdaroglu A, Camurdan O, Hirfanoglu T, Bideci A, Gucuyener K. The evaluation of thyroid functions, thyroid antibodies, and thyroid volumes in children with epilepsy during short-term administration of oxcarbazepine and valproate. Epilepsia. 2006;47:1855–9.

    Article  CAS  PubMed  Google Scholar 

  91. Verrotti A, Laus M, Scardapane A, Franzoni E, Chiarelli F. Thyroid hormones in children with epilepsy during long-term administration of carbamazepine and valproate. Eur J Endocrinol. 2009;160:81–6.

    Article  CAS  PubMed  Google Scholar 

  92. Barbesino G. Drugs affecting thyroid function. Thyroid. 2010;20:763–70. https://doi.org/10.1089/thy.2010.1635.

    Article  PubMed  Google Scholar 

  93. Fatourechi V. Subclinical hypothyroidism: an update for primary care physicians. Mayo Clin Proc. 2009;84:65–71.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cooper DS, Biondi B. Subclinical thyroid disease. Lancet. 2012;379:1142–54.

    Article  PubMed  Google Scholar 

  95. Cartwright D, O’Shea P, Rajanayagam O, et al. Familial dysalbuminemic hyperthyroxinemia: a persistent diagnostic challenge. Clin Chem. 2009;55:1044–6.

    Article  CAS  PubMed  Google Scholar 

  96. Beck-Peccoz P, Persani L, Mannavola D, Campi I. TSH-secreting adenomas. Best Pract Res Clin Endocrinol Metab. 2009;23:597–606.

    Article  CAS  PubMed  Google Scholar 

  97. Giovanella L, Ceriani L, Maffioli M. Postsurgery serum thyroglobulin disappearance kinetic in patients with differentiated thyroid carcinoma. Head Neck. 2010;32:568–71.

    PubMed  Google Scholar 

  98. Tegler L, Ericsson UB, Gillquist J, Lindvall R. Basal and thyrotropin-stimulated secretion rates of thyroglobulin from the human thyroid gland during surgery. Thyroid. 1993;3:213–7.

    Article  CAS  PubMed  Google Scholar 

  99. Demers LM, Spencer CA. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid. 2003;13:3–126.

    Article  PubMed  Google Scholar 

  100. Fugazzola L. Stimulated calcitonin cut-offs by different tests. Eur Thyroid J. 2013;2:49–56.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan K. G. Grebe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grebe, S.K.G. (2019). Laboratory Testing in Thyroid Disorders. In: Luster, M., Duntas, L., Wartofsky, L. (eds) The Thyroid and Its Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-72102-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72102-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72100-2

  • Online ISBN: 978-3-319-72102-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics