Skip to main content

A Universal Algebra for the Variable-Free Fragment of \({\mathrm {RC}^\nabla }\)

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10703))

Abstract

The language of Reflection Calculus \(\mathrm {RC}\) consists of implications between formulas built up from propositional variables and the constant ‘true’ using only conjunction and the diamond modalities which are interpreted in Peano arithmetic as restricted uniform reflection principles. In [6] we introduced \({\mathrm {RC}^\nabla }\), an extension of \(\mathrm {RC}\) by a series of modalities representing the operators associating with a given arithmetical theory T its fragment axiomatized by all theorems of T of arithmetical complexity \(\varPi ^0_n\), for all \(n>0\). In this paper we continue the study of the variable-free fragment of \({\mathrm {RC}^\nabla }\) and characterize its Lindenbaum–Tarski algebra in several natural ways.

L. D. Beklemishev—This work is supported by the Russian Science Foundation under grant 16–11–10252.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We do not distinguish notationally an operation on a set and its restriction to a subset.

  2. 2.

    We avoid the term ‘consistent’, for even the improper theory corresponds to a consistent set of arithmetical sentences.

References

  1. Beklemishev, L.D., Onoprienko, A.A.: On some slowly terminating term rewriting systems. Sbornik Math. 206, 1173–1190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beklemishev, L.D.: Provability algebras and proof-theoretic ordinals. Ann. Pure Appl. Logic 128, 103–123 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beklemishev, L.D.: Reflection principles and provability algebras in formal arithmetic. Russ. Math. Surv. 60(2), 197–268 (2005). Russian original: Uspekhi Matematicheskikh Nauk, 60(2): 3–78 (2005)

    Article  MATH  Google Scholar 

  4. Beklemishev, L.D.: The Worm principle. In: Chatzidakis, Z., Koepke, P., Pohlers, W. (eds.) Logic Colloquium 2002. Lecture Notes in Logic, vol. 27, pp. 75–95. AK Peters (2006). Preprint: Logic Group Preprint Series 219, Utrecht University, March 2003

    Google Scholar 

  5. Beklemishev, L.D.: Calibrating provability logic: from modal logic to reflection calculus. In: Bolander, T., Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal Logic, vol. 9, pp. 89–94. College Publications, London (2012)

    Google Scholar 

  6. Beklemishev, L.D.: On the reflection calculus with partial conservativity operators. In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp. 48–67. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-2_4

    Chapter  Google Scholar 

  7. Beklemishev, L.D., Joosten, J., Vervoort, M.: A finitary treatment of the closed fragment of Japaridze’s provability logic. J. Logic Comput. 15(4), 447–463 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boolos, G.: The Logic of Provability. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  9. Dashkov, E.V.: On the positive fragment of the polymodal provability logic GLP. Matematicheskie Zametki 91(3), 331–346 (2012). English translation: Mathematical Notes 91(3):318–333, 2012

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernández-Duque, D., Joosten, J.: Models of transfinite provability logic. J. Symbol. Logic 78(2), 543–561 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Reyes, E.H., Joosten, J.J.: The logic of Turing progressions. arXiv:1604.08705v2 [math.LO] (2016)

  12. Reyes, E.H., Joosten, J.J.: Relational semantics for the Turing Schmerl calculus. arXiv:1709.04715 [math.LO] (2017)

  13. Icard III, T.F.: A topological study of the closed fragment of GLP. J. Logic Comput. 21(4), 683–696 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ignatiev, K.N.: On strong provability predicates and the associated modal logics. J. Symbol. Logic 58, 249–290 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jackson, M.: Semilattices with closure. Algebra Universalis 52, 1–37 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Japaridze, G.K.: The modal logical means of investigation of provability. Thesis in Philosophy, in Russian, Moscow (1986)

    Google Scholar 

  17. Joosten, J.J.: Turing–Taylor expansions of arithmetical theories. Studia Logica 104, 1225–1243 (2015). https://doi.org/10.1007/s11225-016-9674-z

    Article  MATH  Google Scholar 

  18. Kikot, S., Kurucz, A., Tanaka, Y., Wolter, F., Zakharyaschev, M.: On the completeness of EL-equations: first results. In: 11th International Conference on Advances in Modal Logic, Short Papers (Budapest, 30 August – 2 September, 2016), pp. 82–87 (2016)

    Google Scholar 

  19. Kikot, S., Kurucz, A., Tanaka, Y., Wolter, F., Zakharyaschev, M.: Kripke Completeness of strictly positive modal logics over meet-semilattices with operators. ArXiv e-prints, August 2017

    Google Scholar 

  20. Kurucz, A., Tanaka, Y., Wolter, F., Zakharyaschev, M.: Conservativity of Boolean algebras with operators over semi lattices with operators. In: Proceedings of TACL 2011, pp. 49–52 (2011)

    Google Scholar 

  21. Pakhomov, F.: On the complexity of the closed fragment of Japaridze’s provability logic. Archive Math. Logic 53(7), 949–967 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pakhomov, F.: On elementary theories of ordinal notation systems based on reflection principles. Proc. Steklov Inst. Math. 289, 194–212 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shamkanov, D.: Nested sequents for provability logic GLP. Logic J. IGPL 23(5), 789–815 (2015)

    Article  MathSciNet  Google Scholar 

  24. Sofronie-Stokkermans, V.: Locality and subsumption testing in EL and some of its extensions. In: Areces, C., Goldblatt, R. (eds.) Advances in Modal Logic, vol. 7, pp. 315–339. College Publications, London (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev D. Beklemishev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beklemishev, L.D. (2018). A Universal Algebra for the Variable-Free Fragment of \({\mathrm {RC}^\nabla }\) . In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2018. Lecture Notes in Computer Science(), vol 10703. Springer, Cham. https://doi.org/10.1007/978-3-319-72056-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72056-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72055-5

  • Online ISBN: 978-3-319-72056-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics