Skip to main content

Probabilistic Reasoning About Simply Typed Lambda Terms

  • Conference paper
  • First Online:
Logical Foundations of Computer Science (LFCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10703))

Included in the following conference series:

Abstract

Reasoning with uncertainty has gained an important role in computer science, artificial intelligence and cognitive science. These applications urge for development of formal models which capture reasoning of probabilistic features. We propose a formal model for reasoning about probabilities of simply typed lambda terms. We present its syntax, Kripke-style semantics and axiomatic system. The main results are the corresponding soundness and strong completeness, which rely on two key facts: the completeness of simple type assignment and the existence of a maximal consistent extension of a consistent set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For any real number \(\epsilon > 0\) there exists an \(n \in \mathbb {N}\) such that \(\frac{1}{n} < \epsilon \).

References

  1. Abadi, M., Halpern, J.Y.: Decidability and expressiveness for first-order logics of probability. Inf. Comput. 112(1), 1–36 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci. Comput. Program. 74(8), 568–589 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. North Holland, New York (1984)

    Google Scholar 

  4. Barendregt, H.P., Dekkers, W., Statman, R.: Lambda Calculus with Types (Perspectives in logic). Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  5. Bizjak, A., Birkedal, L.: Step-indexed logical relations for probability. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 279–294. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46678-0_18

    Chapter  Google Scholar 

  6. Cooper, R., Dobnik, S., Lappin, S., Larsson, S.: A probabilistic rich type theory for semantic interpretation. In: Proceedings of the EACL 2014 Workshop on Type Theory and Natural Language Semantics (TTNLS), pp. 72–79 (2014)

    Google Scholar 

  7. Doder, D., Grant, J., Ognjanović, Z.: Probabilistic logics for objects located in space and time. J. Logic Comput. 23(3), 487–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ehrhard, T., Pagani, M., Tasson, C.: The computational meaning of probabilistic coherence spaces. In: Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011, pp. 87–96 (2011)

    Google Scholar 

  9. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87(1/2), 78–128 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fattorosi-Barnaba, M., Amati, G.: Modal operators with probabilistic interpretations. I. Studia Logica 46(4), 383–393 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghilezan, S., Likavec, S.: Computational interpretations of logics. Zbornik radova, Special Issue Logic and Computer Science, Matematički institut 12(20), 159–215 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Goodman, N.D.: The principles and practice of probabilistic programming. In: The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2013, pp. 399–402 (2013)

    Google Scholar 

  13. Hindley, J.R.: The completeness theorem for typing lambda-terms. Theor. Comput. Sci. 22, 1–17 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hindley, J.R.: Basic Simple Type Theory. Cambridge Tracts in Theoretical Computer Science 42. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  15. Hindley, J.R., Longo, G.: Lambda-calculus models and extesionality. Math. Logic Q. 26, 289–310 (1980)

    Article  MATH  Google Scholar 

  16. Ikodinović, N., Ognjanović, Z., Rašković, M., Marković, Z.: First-order probabilistic logics and their applications. Zbornik radova, Subseries Logic in Computer Science, Matematički institut 18(26), 37–78 (2015)

    MathSciNet  Google Scholar 

  17. Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps towards probabilistic justification logic. Logic J. IGPL 23(4), 662–687 (2015)

    Article  MathSciNet  Google Scholar 

  18. Kokkinis, I., Ognjanović, Z., Studer, T.: Probabilistic justification logic. In: Artemov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 174–186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27683-0_13

    Chapter  Google Scholar 

  19. Lago, U.D., Zorzi, M.: Probabilistic operational semantics for the lambda calculus. RAIRO Theor. Inform. Appl. 46(3), 413–450 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marković, Z., Ognjanović, Z., Rašković, M.: A probabilistic extension of intuitionistic logic. Math. Logic Q. 49(4), 415–424 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Milnikel, R.S.: The logic of uncertain justifications. Ann. Pure Appl. Logic 165(1), 305–315 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ognjanović, Z.: Discrete linear-time probabilistic logics: completeness, decidability and complexity. J. Logic Comput. 16(2), 257–285 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ognjanović, Z., Rašković, M., Marković, Z.: Probability logics. Zborik radova, Subseries Logic in Computer Science, Matematički institut 12(20), 35–111 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Ognjanović, Z., Rašković, M., Marković, Z.: Probability Logics: Probability-Based Formalization of Uncertain Reasoning. Springer, Cham (2016)

    Google Scholar 

  26. Savić, N., Doder, D., Ognjanović, Z.: Logics with lower and upper probability operators. Int. J. Approx. Reason. 88, 148–168 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the SNSF project 200021_165549 Justifications and non-classical reasoning, and by the Serbian Ministry of Education, Science and Technological Development through projects ON174026, III 044006 and ON174008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Savić .

Editor information

Editors and Affiliations

Appendix Proofs

Appendix Proofs

Proof of Theorem 3 . Suppose that \(T\cup \{\phi \}\vdash \psi \). We use transfinite induction on the length of a proof.

If the length of a proof is equal to 1, then \(\psi \) is either an axiom or \(\psi \in T\cup \{\phi \}\).

  1. (a)

    If \(\psi \) is an axiom:

    • \(T\vdash \psi \)      Ax

    • \(T\vdash \psi \Rightarrow (\phi \Rightarrow \psi )\)      Ax

    • \(T\vdash \phi \Rightarrow \psi \)      MP,

  2. (b)

    If \(\psi \in T\):

    • \(T\vdash \psi \)      Hyp

    • \(T\vdash \psi \Rightarrow (\phi \Rightarrow \psi )\)      Ax

    • \(T\vdash \phi \Rightarrow \psi \)      MP,

  3. (c)

    If \(\psi \in \{\phi \}\):

    • \(T\vdash \phi \Rightarrow \phi \)      Ax.

Now, suppose that the length of a proof is \(k>1\). Formula \(\psi \) can belong to the set \(T\cup \{\phi \}\), but then the proof is the same as above. Therefore, suppose that the formula \(\psi \) is obtained by an application of some inference rule from the Inference Rules II.

First, if \(\psi \) is obtained by an application of Rule II.1 from \(T,\phi \vdash \psi _1\) and \(T,\phi \vdash \psi _1\Rightarrow \psi \):

  • \(T\vdash \phi \Rightarrow \psi _1\)      Ind. Hyp.

  • \(T\vdash \phi \Rightarrow (\psi _1\Rightarrow \psi )\)      Ind. Hyp.

  • \(T\vdash (\phi \Rightarrow (\psi _1\Rightarrow \psi ))\Rightarrow ((\phi \Rightarrow \psi _1)\Rightarrow (\phi \Rightarrow \psi ))\)      Taut.

  • \(T\vdash (\phi \Rightarrow \psi _1)\Rightarrow (\phi \Rightarrow \psi )\)      MP

  • \(T\vdash \phi \Rightarrow \psi \)      MP

Next, let us consider the case \(\psi =P_{\ge 1}\alpha \) is obtained from \(T\cup \{\phi \}\) by an application of Rule II.2. In that case:

  • \(T,\phi \vdash \alpha \),

  • \(T,\phi \vdash P_{\ge 1}\alpha \) by IR II.2.

However, since \(\alpha \in \mathsf{For_B}\) and \(\phi \in \mathsf{For_P}\) (otherwise, \(\phi \Rightarrow P_{\ge 1}\alpha \) would not make sense), \(\phi \) cannot affect the proof of \(\alpha \) from \(T\cup \{\phi \}\), and we have:

  1. (1)

    \(T\vdash \alpha \)      Hyp.

  2. (2)

    \(T\vdash P_{\ge 1}\alpha \)      IR II.2

  3. (3)

    \(T\vdash P_{\ge 1}\alpha \Rightarrow (\phi \Rightarrow P_{\ge 1}\alpha )\)      Taut.

  4. (4)

    \(T\vdash \phi \Rightarrow P_{\ge 1}\alpha \)      MP.

Finally, let us consider the case \(\psi = \psi _1\Rightarrow P_{\ge s}\alpha \) is obtained from \(T\cup \{\phi \}\) by an application of Rule II.3. Then:

  1. (1)

    \(T,\phi \vdash \psi _1\Rightarrow P_{\ge s-\frac{1}{k}}\alpha \), for all \(k\ge \frac{1}{s}\)      Hyp.

  2. (2)

    \(T\vdash \phi \Rightarrow (\psi _1\Rightarrow P_{\ge s-\frac{1}{k}}\alpha )\)      Ind.Hyp.

  3. (3)

    \(T\vdash (\phi \wedge \psi _1)\Rightarrow P_{\ge s-\frac{1}{k}}\alpha \)      Taut.

  4. (4)

    \(T\vdash (\phi \wedge \psi _1)\Rightarrow P_{\ge s}\alpha \)      IR II.3

  5. (5)

    \(T\vdash \phi \Rightarrow \psi \) Taut.\(\square \)

Proof of Theorem 4 . Our goal is to show that every instance of an axiom scheme holds in every model and that the inference rules preserve the validity. The Axiom 1 holds in every model because of the completeness of classical propositional logic.

By the Definition of the finitely additive probability measure we have that \(\mu ([\alpha ])\ge 0\) for all \(\alpha \in \mathsf{For_B}\). Hence, \(\mathcal M\,\models \, P_{\ge 0} \alpha \), for every model \(\mathcal M\) and the Axiom 2 is valid.

Let us consider the Axiom 3. Suppose that \(P_{\le r} \alpha \) holds in model \(\mathcal M=\langle W,\rho ,\xi ,H,\mu \rangle \) and \(s>r\). It means that \(\mu ([\alpha ])\le r\). Since \(s>r\), we obtain \(\mu ([\alpha ])< s\), that is \(\mathcal M\,\models \, P_{<s} \alpha \).

Similarly, for the Axiom 4, suppose that \(\mathcal M \,\models \, P_{<s} \alpha \). Then, we have \(\mu ([\alpha ])<s\), that implies \(\mu ([\alpha ])\le s\). Thus, \(\mathcal M \,\models \, P_{\le s}\alpha \).

Next, let us consider Axiom 5. Suppose that in a model \(\mathcal M=\langle W,\rho ,\xi ,H,\mu \rangle \),

$$P_{\ge r}\alpha , P_{\ge s}\beta \; \; \text{ and } \; \; P_{\ge 1}\lnot (\alpha \vee \beta )$$

hold. Then, \(\mu ([\alpha ])\ge r\), \(\mu ([\beta ])\ge s\) and \([\alpha ]\) and \([\beta ]\) are disjoint sets. Since \(\mu \) is a finitely additive measure, we have that

$$\mu ([\alpha ]\cup [\beta ])=\mu ([\alpha \vee \beta ])=\mu ([\alpha ])+\mu ([\beta ]).$$

Thus, \(\mathcal M\,\models \, P_{\ge min\{1,r+s\}}(\alpha \vee \beta )\), so Axiom 5 holds in the model \(\mathcal M\).

Now, let us consider the Axiom 6. Suppose that \(P_{\le r} \alpha \), \(P_{< s} \beta \) hold in a model \(\mathcal M=\langle W,\rho ,\xi ,H,\mu \rangle \). Then, \(\mu ([\alpha ])\le r\) and \(\mu ([\beta ])< s\). From

$$[\alpha ]=([\alpha ] \cap (W\setminus [\beta ])) \cup [\alpha \wedge \beta ],$$

follows that

$$\mu ([\alpha ])\ge \mu ([\alpha ] \cap (W\setminus [\beta ])).$$

Since \([\alpha \vee \beta ]=([\alpha ] \cap (W\setminus [\beta ])) \cup [\beta ]\), we have that

$$\mu ([\alpha \vee \beta ])\le \mu ([\alpha ])+\mu ([\beta ])<r+s.$$

Therefore, \(\mathcal M \,\models \, P_{<r+s} (\alpha \vee \beta )\).

Finally, for the Axiom 7, suppose that \(P_{\ge 1}(\alpha \Rightarrow \beta )\) holds in a model \(\mathcal M=\langle W,\rho ,\xi ,H,\mu \rangle \). Then, the set of all worlds in which \(\alpha \) holds, but \(\beta \) does not hold has the measure 0, i.e., \(\mu ([\alpha ] \cap (W\setminus [\alpha \Rightarrow \beta ]))=0\). From

$$[\alpha ]=([\alpha ]\cap (W\setminus [\alpha \Rightarrow \beta ]))\cup ([\alpha ] \cap [\alpha \Rightarrow \beta ])$$

follows that \(\mu ([\alpha ])=\mu ([\alpha ] \cap [\alpha \Rightarrow \beta ])\) and, since \([\alpha ] \cap [\alpha \Rightarrow \beta ]\subseteq [\beta ]\), we have that \(\mu ([\alpha ]) \le \mu ([\beta ])\). Thus, \(\mathcal M \,\models \, P_{\ge s} \alpha \Rightarrow P_{\ge s} \beta \) and Axiom 7 holds in \(\mathcal M\).

The proof that Inference Rules I are sound can be found in [13].

Inference Rules II:

  • Rule II.1 is validity-preserving for the same reason as in classical logic.

  • Rule II.2: suppose that \(\alpha \) holds in \(\mathcal M=\langle W,\rho ,\xi ,H,\mu \rangle \), then \([\alpha ]=W\), and therefore \(\mu ([\alpha ])=1\), so \(\mathcal M\,\models \, P_{\ge 1}\alpha \).

  • Rule II.3: Suppose that \(\mathcal M\,\models \,\phi \Rightarrow P_{\ge s-\frac{1}{k}}\alpha \) whenever \(k\ge \frac{1}{s}\). If \(\mathcal M\not \models \phi \), then obviously \(\mathcal M\,\models \,\phi \Rightarrow P_{\ge s}\alpha \). Otherwise \(\mathcal M\,\models \, P_{\ge s-\frac{1}{k}}\alpha \) for every \(k\ge \frac{1}{s}\), so \(\mathcal M\,\models \, P_{\ge s} \alpha \) because of the Archimedean properties of the set of reals. \(\square \)

Proof of Lemma 1

  1. (1)

    If \(T\cup \{\phi \}\vdash \bot \), and \(T\cup \{\lnot \phi \}\vdash \bot \), then by Deduction theorem we have \(T\vdash \lnot \phi \) and \(T\vdash \phi \). Contradiction.

  2. (2)

    Suppose that for all \(n>\frac{1}{s}\):

    $$T,\phi \Rightarrow \lnot P_{\ge s-\frac{1}{n}}\alpha \vdash \bot .$$

    Therefore, by Deduction theorem and propositional reasoning, we have

    $$T\vdash \phi \Rightarrow P_{\ge s-\frac{1}{n}}\alpha ,$$

    and by an application of Rule II.3 we obtain \(T\vdash \phi \Rightarrow P_{\ge s}\alpha \). Contradiction with the fact that \(\lnot (\phi \Rightarrow P_{\ge s}\alpha )\in T\). \(\square \)

Proof of Lemma 2

(1) Consequence of Definition 7.4.

(2) Let \(t=sup\{s\mid P_{\ge s}\alpha \in T\}\in \mathsf{S}.\) By the monotonicity of a measure, for each \(s\in S\), \(s<t\), \(T\vdash P_{\ge s}\alpha \). Using Inference rule 3, we obtain

$$T\vdash P_{\ge t}\alpha .$$

T is a maximal consistent set of formulas, so, from (1), we have that

$$P_{\ge t}\alpha \in T.$$

\(\square \)

Proof of Lemma 3

  1. (1)

    The prove that H is an algebra is straightforward using that \(W=[\alpha \vee \lnot \alpha ]\), \([\alpha ]^C=[\lnot \alpha ]\) and \([\alpha ]\cup [\beta ]=[\alpha \vee \beta ]\).

  2. (2)

    It suffices to prove that \([\alpha ]\subset [\beta ]\) implies \(\mu ([\alpha ])\le \mu ([\beta ])\). According to the completeness of the propositional logic, we have that \([\alpha ]\subset [\beta ]\) means that \(\alpha \Rightarrow \beta \in \mathsf{Cn_B}(T)\), and then also \(P_{\ge 1}(\alpha \Rightarrow \beta )\in T^\star \). By axiom 7, we obtain that for each \(s\in S\), \(P_{\ge s}\alpha \Rightarrow P_{\ge s}\beta \in T^\star \), so \(\mu ([\alpha ])\le \mu ([\beta ])\).

  3. (3)

    \(P_{\ge 0}\alpha \) is an axiom, so \(\mu ([\alpha ])\ge 0\).

  4. (4)

    For any \(\alpha \in T\), we have that \(\alpha \vee \lnot \alpha \in \mathsf{Cn_B}(T)\) and \(P_{\ge 1}(\alpha \vee \lnot \alpha )\in T^\star \), therefore, we obtain that \(W=[\alpha \vee \lnot \alpha ]\) and \(\mu (W)=1\). Since \(P_{\ge 1}(\alpha \vee \lnot \alpha )=P_{\ge 1-0}(\alpha \vee \lnot \alpha )=P_{\le 0}\lnot (\alpha \vee \lnot \alpha )=P_{\le 0}(\lnot \alpha \wedge \alpha )\) \(=\lnot P_{> 0}(\lnot \alpha \wedge \alpha ),\) using that \(P_{\ge t}\alpha \Rightarrow P_{> s}\alpha \), for \(t>s\), we obtain that

    $$sup \{s\mid P_{\ge s}(\lnot \alpha \wedge \alpha )\in T^\star \}=0,$$

    and \(\mu (\emptyset )=0.\)

  5. (5)

    Let \(\mu ([\alpha ])=\sup \{s\mid P_{\ge s}\alpha \in T^\star \}=r\). If \(r=1\), then from Lemma 2 we obtain \(P_{\ge 1}\alpha \in T^\star \). Therefore, \(\lnot P_{>0}\lnot \alpha \in T^\star .\) Again, using the fact that \(P_{\ge t}\alpha \Rightarrow P_{> s}\alpha \), for \(t>s\), we obtain that \(\mu ([\lnot \alpha ])=0.\) Now, suppose that \(r<1.\) Then, for each rational number \(r'\in (r,1]\), \(\lnot P_{\ge r'}\alpha = P_{<r'}\alpha \in T^\star \). By Axiom 4, we obtain that \(P_{\le r'}\alpha , P_{\ge 1-r'}\lnot \alpha \in T^\star \). If there is some rational number \(r''\in [0,r)\) such that \(P_{\ge 1-r''}\lnot \alpha \in T^\star \), then \(\lnot P_{> r''}\alpha \in T^\star \), contradiction. Thus,

    $$\sup \{s\mid P_{\ge s}\lnot \alpha \in T^\star \}=1-\sup \{s\mid P_{\ge s}\alpha \in T^\star \},$$

    i.e., \(\mu ([\alpha ])=1-\mu ([\lnot \alpha ])\).

  6. (6)

    Let \([\alpha ]\cap [\beta ]=\emptyset \), and let \(\mu ([\alpha ])=r\) and \(\mu ([\beta ])=s\). From the fact that \([\beta ]\subset [\lnot \alpha ]\), using steps (2) and (5), we obtain that \(r+s\le r+(1-r)=1\). Suppose that both \(r>0\) and \(s>0\). Using properties of the supremum, for every rational number \(r'\in [0,r)\), and for every rational number

    \(s'\in [0,s)\), we have that \(P_{\ge r'}\alpha , P_{\ge s'}\beta \in T^\star \). By the Axiom 5, we know that \(P_{\ge r'+s'}(\alpha \vee \beta )\in T^\star \). Therefore, \(r+s\le t_0=\sup \{t\mid P_{\ge t}(\alpha \vee \beta \in T^\star )\}\). In the case that \(r+s=1\), the statement holds obviously, so suppose that \(r+s<1\). If \(r+s<t_0\), then for every rational number \(t'\in (r+s,t_0)\) we have \(P_{\ge t'}(\alpha \vee \beta )\in T^\star \). There exists rational numbers \(r''>r\) and \(s''>s\), such that:

    $$\lnot P_{\ge r''}\alpha , P_{< r''}\alpha \in T^\star \quad , \lnot P_{\ge s''}\alpha , P_{< s''}\alpha \in T^\star ,$$

    and

    $$r''+s''=t'\le 1.$$

    By Axiom 4, we obtain \(P_{\le r''}\in T^\star \). Using Axiom 6, we get

    $$P_{\le r''+s''}(\alpha \vee \beta )\in T^\star ,\quad \lnot P_{\ge r''+s''}(\alpha \vee \beta )\in T^\star ,$$

    and

    $$\lnot P_{\ge t'}(\alpha \vee \beta )\in T^\star .$$

    Contradiction. Hence, \(r+s=t_0\) and we obtain that

    \(\mu ([\alpha ]\cup [\beta ])=\mu ([\alpha ]) + \mu ([\beta ])\). Finally, if we suppose that \(r=0\) or \(s=0\), we can reason as above, where \(r'=0\) or \(s'=0\).\(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghilezan, S., Ivetić, J., Kašterović, S., Ognjanović, Z., Savić, N. (2018). Probabilistic Reasoning About Simply Typed Lambda Terms. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2018. Lecture Notes in Computer Science(), vol 10703. Springer, Cham. https://doi.org/10.1007/978-3-319-72056-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72056-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72055-5

  • Online ISBN: 978-3-319-72056-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics