Skip to main content

Seagrass Resistance to Light Deprivation: Implications for Resilience

  • Chapter
  • First Online:
Seagrasses of Australia

Abstract

Seagrass habitat is strongly constrained by light availability. Decline in benthic light due to anthropogenic activities (e.g. eutrophication, dredging and catchment modification) is a major threat to seagrass ecosystems , both within Australia and internationally. Even in pristine conditions, light available to seagrasses can be highly variable on timescales ranging from seconds to years. This chapter outlines the three primary mechanisms which enable seagrass to adapt to and/or resist temporary light deprivation: (1) consumption of accumulated carbon; (2) reduction in rates of growth and carbon loss; and (3) increased efficiency of radiation capture and usage. The capacity to withstand severe light deprivation ranges from only two weeks for small, colonising seagrass species such as Halophila ovalis , to beyond two years for large, persistent species such as Posidonia sinuosa. This “tolerance time” depends on the magnitude and timing of the light deprivation, current environmental conditions (e.g. temperature and sediment sulphides) as well as preceding conditions. This chapter proposes a simple conceptual model for seagrass resilience to temporary light reduction , combining both resistance (the capacity of seagrass to survive the light deprivation event) , and the capacity to recover once the disturbance ends. Data is synthesized for several potential indicators of seagrass resistance to light reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abal E, Dennison W (1996) Seagrass depth range and water quality in southern Moreton Bay, Queensland, Australia. Mar Freshw Res 47:763–771

    Article  CAS  Google Scholar 

  • Abal E, Loneragan N, Bowen P, Perry C, Udy J, Dennison W (1994) Physiological and morphological responses of the seagrass Zostera capricorni Aschers, to light intensity. J Exp Mar Biol Ecol 178:113–129

    Article  Google Scholar 

  • Adams MP, Collier CJ, Uthicke S, Ow Y, Langlois L, R OBK (2017) Model fit versus biological relevance: evaluating photosynthesis-temperature models for three tropical seagrass species. Sci Rep 7:3990

    Google Scholar 

  • Alcoverro T, Manzanera M, Romero J (1998) Seasonal and age-dependent variability of Posidonia oceanica (L.) Delile photosynthetic parameters. J Exp Mar Biol Ecol 230:1–13

    Article  CAS  Google Scholar 

  • Alcoverro T, Manzanera M, Romero J (2001) Annual metabolic carbon balance of the seagrass Posidonia oceanica: the importance of carbohydrate reserves. Mar Ecol Prog Ser 211:105–116

    Article  CAS  Google Scholar 

  • Baird ME, Adams MP, Babcock RC, Oubelkheir K, Mongin M, Wild-Allen KA, Skerratt J, Robson BJ, Petrou K, Ralph PJ, O’Brien KR, Carter AB, Jarvis JC, Rasheed MA (2016) A physical representation of seagrass growth for application in a complex shallow-water biogeochemical model. Ecol Model 325:13–27

    Article  CAS  Google Scholar 

  • Blondeau-Patissier D, Gower JF, Dekker AG, Phinn SR, Brando VE (2014) A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog Oceanogr 123:123–144

    Article  Google Scholar 

  • Brodersen KE, Nielsen DA, Ralph PJ, Kühl M (2015) Oxic microshield and local pH enhancement protects Zostera muelleri from sediment derived hydrogen sulphide. New Phytol 205:1264–1276

    Article  CAS  PubMed  Google Scholar 

  • Brun FG, Hernández I, Vergara JJ, Pérez-Lloréns JL (2003) Growth, carbon allocation and proteolytic activity in the seagrass Zostera noltii shaded by Ulva canopies. Funct Plant Biol 30:551–560

    Article  CAS  Google Scholar 

  • Brush MJ, Nixon SW (2002) Direct measurements of light attenuation by epiphytes on eelgrass Zostera marina. Mar Ecol Prog Ser 238:73–79

    Article  Google Scholar 

  • Burke MK, Dennison WC, Moore KA (1996) Non-structural carbohydrate reserves of eelgrass Zostera marina. Mar Ecol Prog Ser 137:195–201

    Article  CAS  Google Scholar 

  • Burkholder JM, Tomasko DA, Touchette BW (2007) Seagrasses and eutrophication. J Exp Mar Biol Ecol 350:46–72

    Article  Google Scholar 

  • Cambridge M, Chiffings A, Brittan C, Moore L, McCOMB AJ (1986) The loss of seagrass in Cockburn Sound, Western Australia. II. Possible causes of seagrass decline. Aquat Bot 24:269–285

    Article  Google Scholar 

  • Cambridge M, How J, Lavery P, Vanderklift M (2007) Retrospective analysis of epiphyte assemblages in relation to seagrass loss in a eutrophic coastal embayment. Mar Ecol Prog Ser 346:97–107

    Google Scholar 

  • Campbell SJ, McKenzie LJ (2004) Flood related loss and recovery of intertidal seagrass meadows in southern Queensland, Australia. Estuar Coast Shelf Sci 60:477–490

    Article  Google Scholar 

  • Campbell SJ, McKenzie LJ, Kerville SP (2006) Photosynthetic responses of seven tropical seagrasses to elevated seawater temperature. J Exp Mar Biol Ecol 330:455–468

    Article  CAS  Google Scholar 

  • Carruthers T, Walker D (1997) Light climate and energy flow in the seagrass canopy of Amphibolis griffithii (JM Black) den Hartog. Oecologia 109:335–341

    Article  CAS  PubMed  Google Scholar 

  • Chartrand KM, Bryant CV, Carter AB, Ralph PJ, Rasheed MA (2016) Light thresholds to prevent dredging impacts on the Great Barrier Reef seagrass, Zostera muelleri ssp. capricorni. Front Mar Sci 3:106

    Google Scholar 

  • Connelly RM, Jackson EL, Kendrick GA, Macreadie P, Maxwell PS, O’Brien KR (2018) Seagrass dynamics and resilience. In: Larkum AWD, Ralph PJ, Kendrick GA (eds) Seagrasses of Australia

    Google Scholar 

  • Collier C, Waycott M (2009) Drivers of change to seagrass distributions and communities on the Great Barrier Reef: literature review and gaps analysis. Reef and Rainforest Research Centre

    Google Scholar 

  • Collier CJ, Lavery PS, Masini RJ, Ralph PJ (2007) Morphological, growth and meadow characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability. Mar Ecol Prog Ser 337:103–115

    Article  Google Scholar 

  • Collier C, Lavery P, Ralph P, Masini R (2008) Physiological characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability. Mar Ecol Prog Ser 353:65–79

    Google Scholar 

  • Collier CJ, Lavery PS, Ralph PJ, Masini RJ (2009) Shade-induced response and recovery of the seagrass Posidonia sinuosa. J Exp Mar Biol Ecol 370:89–103

    Article  Google Scholar 

  • Collier CJ, Uthicke S, Waycott M (2011) Thermal tolerance of two seagrass species at contrasting light levels: implications for future distribution in the Great Barrier Reef. Limnol Oceanogr 56:2200–2210

    Article  CAS  Google Scholar 

  • Collier C, Waycott M, McKenzie L (2012a) Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia. Ecol Ind 23:211–219

    Article  Google Scholar 

  • Collier CJ, Waycott M, Giraldo-Ospina A (2012b) Responses of four Indo-West Pacific seagrass species to shading. Mar Pollut Bull 65:342–354

    Article  CAS  PubMed  Google Scholar 

  • Collier CJ, Adams MP, Langlois L, Waycott M, O’Brien KR, Maxwell PS, Mckenzie L (2016) Thresholds for morphological response to light reduction for four tropical seagrass species. Ecol Indicat 67:358–366

    Google Scholar 

  • Dennison WC (1987) Effects of light on seagrass photosynthesis, growth and depth distribution. Aquat Bot 27:15–26

    Article  Google Scholar 

  • Dennison WC, Abal EG (1999) Moreton Bay study: a scientific basis for the healthy waterways campaign. South East Qld Regional Water Quality Management Strategy Team

    Google Scholar 

  • Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW, Batiuk RA (1993) Assessing water quality with submersed aquatic vegetation. Bioscience 43:86–94

    Article  Google Scholar 

  • Devlin MJ, Petus C, Da Silva E, Tracey D, Wolff NH, Waterhouse J, Brodie J (2015) Water quality and river plume monitoring in the Great Barrier Reef: an overview of methods based on ocean colour satellite data. Remote Sens 7:12909–12941

    Article  Google Scholar 

  • Drake LA, Dobbs FC, Zimmerman RC (2003) Effects of epiphyte load on optical properties and photosynthetic potential of the seagrasses Thalassia testudinum Banks ex König and Zostera marina L. Limnol Oceanogr 48:456–463

    Article  Google Scholar 

  • Duarte CM (1991a) Allometric scaling of seagrass form and productivity. Mar Ecol Prog Ser (Oldendorf) 77:289–300

    Article  Google Scholar 

  • Duarte CM (1991b) Seagrass depth limits. Aquat Bot 40:363–377

    Article  Google Scholar 

  • Duarte CM (1995) Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41:87–112

    Article  Google Scholar 

  • Duarte CM, Chiscano CL (1999) Seagrass biomass and production: a reassessment. Aquat Bot 65:159–174

    Article  Google Scholar 

  • Durako MJ (2007) Leaf optical properties and photosynthetic leaf absorptances in several Australian seagrasses. Aquat Bot 87:83–89

    Article  CAS  Google Scholar 

  • Enríquez S, Pantoja-Reyes NI (2005) Form-function analysis of the effect of canopy morphology on leaf self-shading in the seagrass Thalassia testudinum. Oecologia 145:234–242

    Article  Google Scholar 

  • Enríquez S, Marbà N, Duarte CM, Van Tussenbroek B, Reyes-Zavala G (2001) Effects of seagrass Thalassia testudinum on sediment redox. Mar Ecol Prog Ser 219:149–158

    Article  Google Scholar 

  • Enríquez S, Merino M, Iglesias-Prieto R (2002) Variations in the photosynthetic performance along the leaves of the tropical seagrass Thalassia testudinum. Mar Biol 140:891–900

    Article  CAS  Google Scholar 

  • Erftemeijer PL, Lewis R III, Roy R (2006) Environmental impacts of dredging on seagrasses: a review. Mar Pollut Bull 52:1553–1572

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Raven JA (2013) Aquatic photosynthesis. Princeton University Press

    Google Scholar 

  • Ferguson AJP, Gruber RK, Orr M, Scanes P (2016) Morphological plasticity in Zostera muelleri across light, sediment and nutrient gradients in Australian temperature coastal lakes. Mar Ecol Prog Ser 556:91–104

    Article  CAS  Google Scholar 

  • Ferguson, AJP, Scanes P, Potts J, Adams MP, O’Brien KR (2017) Seagrasses in the south-east Australian region—distribution, metabolism, and morphology in response to hydrodynamic, substrate, and water quality stressors. In: Larkum AWD, Ralph PJ, Kendrick GA (eds) Seagrasses of Australia

    Google Scholar 

  • Ficek D, Kaczmarek S, Ston-Egiert J, Wozniak B, Majchrowski R, Dera J (2004) Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data. Oceanologia 46:533–555

    Google Scholar 

  • Fourqurean JW, Powell GV, Kenworthy WJ, Zieman JC (1995) The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos 72:349–358

    Article  Google Scholar 

  • Frankovich TA, Fourqurean JW (1997) Seagrass epiphyte loads along a nutrient availability gradient, Florida Bay, USA. Mar Ecol Prog Ser 159:37–50

    Article  CAS  Google Scholar 

  • Fyfe S (2003) Spatial and temporal variation in spectral reflectance: are seagrass species spectrally distinct? Limnol Oceanogr 48:464–479

    Article  Google Scholar 

  • Gallegos CL, Kenworthy WJ, Biber PD, Wolfe BS (2009) Underwater spectral energy distribution and seagrass depth limits along an optical water quality gradient. Smithson Contrib Mar Sci 38:359–367

    Google Scholar 

  • Gordon D, Grey K, Chase S, Simpson C (1994) Changes to the structure and productivity of a Posidonia sinuosa meadow during and after imposed shading. Aquat Bot 47:265–275

    Article  Google Scholar 

  • Grech A, Chartrand-Miller K, Erftemeijer P, Fonseca M, McKenzie L, Rasheed M, Taylor H, Coles R (2012) A comparison of threats, vulnerabilities and management approaches in global seagrass bioregions. Environ Res Lett 7:024006

    Article  Google Scholar 

  • Hauxwell J, Cebrián J, Furlong C, Valiela I (2001) Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems. Ecology 82:1007–1022

    Article  Google Scholar 

  • Hauxwell J, Cebrián J, Valiela I (2003) Eelgrass Zostera marina loss in temperate estuaries: relationship to land-derived nitrogen loads and effect of light limitation imposed by algae. Mar Ecol Prog Ser 247:59–73

    Article  CAS  Google Scholar 

  • Hedley J, Enríquez S (2010) Optical properties of canopies of the tropical seagrass Thalassia testudinum estimated by a three-dimensional radiative transfer model. Limnol Oceanogr 55:1537–1550

    Article  Google Scholar 

  • Hedley J, McMahon K, Fearns P (2014) Seagrass canopy photosynthetic response is a function of canopy density and light environment: a model for Amphibolis griffithii. PLoS ONE, 9(10). Article no. e111454, Public Library of Science. https://doi.org/10.1371/journal.pone.0111454

  • Hemminga M (1998) The root/rhizome system of seagrasses: an asset and a burden. J Sea Res 39:183–196

    Article  Google Scholar 

  • Hillman K, McComb A, Walker D (1995) The distribution, biomass and primary production of the seagrass Halophila ovalis in the Swan/Canning Estuary, Western Australia. Aquat Bot 51:1–54

    Article  Google Scholar 

  • Jahnke M, Alcoverro T, Lavery PS, McMahon KM, Procaccini G (2015) Should we sync? Seascape‐level genetic and ecological factors determine seagrass flowering patterns. J Ecol

    Google Scholar 

  • Jarvis JC, Moore KA, Kenworthy WJ (2014) Persistence of Zostera marina L. (eelgrass) seeds in the sediment seed bank. J Exp Mar Biol Ecol 459:126–136

    Article  Google Scholar 

  • Kahn AE, Durako MJ (2009) Wavelength-specific photosynthetic responses of Halophila johnsonii from marine-influenced versus river-influenced habitats. Aquat Bot 91:245–249

    Article  CAS  Google Scholar 

  • Kaldy J (2012) Influence of light, temperature and salinity on dissolved organic carbon exudation rates in Zostera marina L. Aquat Biosyst 8:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehoe M, O’Brien K, Grinham A, Rissik D, Ahern K, Maxwell P (2012) Random forest algorithm yields accurate quantitative prediction models of benthic light at intertidal sites affected by toxic Lyngbya majuscula blooms. Harmful Algae

    Google Scholar 

  • Kendrick GA, Aylward MJ, Hegge BJ, Cambridge ML, Hillman K, Wyllie A, Lord DA (2002) Changes in seagrass coverage in Cockburn Sound, Western Australia between 1967 and 1999. Aquat Bot 73:75–87

    Article  Google Scholar 

  • Kendrick GA, Waycott M, Carruthers TJ, Cambridge ML, Hovey R, Krauss SL, Lavery PS, Les DH, Lowe RJ, Vidal OMI (2012) The central role of dispersal in the maintenance and persistence of seagrass populations. Bioscience 62:56–65

    Article  Google Scholar 

  • Kenworthy W, Gallegos C, Costello C, Field D, di Carlo G (2014) Dependence of eelgrass (Zostera marina) light requirements on sediment organic matter in Massachusetts coastal bays: implications for remediation and restoration. Mar Pollut Bull 83:446–457

    Article  CAS  PubMed  Google Scholar 

  • Kilminster K, McMahon K, Waycott M, Kendrick GA, Scanes P, McKenzie L, O’Brien KR, Lyons M, Ferguson A, Maxwell P (2015) Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci Total Environ 534:97–109

    Article  CAS  PubMed  Google Scholar 

  • Kirk JTO (2011) Light and photosynthesis in aquatic ecosystems. Cambridge University Press

    Google Scholar 

  • Larkum AW, Drew EA, Ralph PJ (2006a) Photosynthesis and metabolism in seagrasses at the cellular level. In: Larkum AWD (ed) Seagrass: biology, ecology and conservation. Springer, pp 323–345

    Google Scholar 

  • Lavery PS, McMahon K, Mulligan M, Tennyson A (2009) Interactive effects of timing, intensity and duration of experimental shading on Amphibolis griffithii. Mar Ecol Prog Ser 394:21–33

    Article  Google Scholar 

  • Lee K-S, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 350:144–175

    Article  Google Scholar 

  • Levin S, Xepapadeas T, Crépin A-S, Norberg J, De Zeeuw A, Folke C, Hughes T, Arrow K, Barrett S, Daily G (2012) Social-ecological systems as complex adaptive systems: modeling and policy implications. Environ Dev Econ 1:1–22

    Article  Google Scholar 

  • Longstaff BJ, Dennison WC (1999) Seagrass survival during pulsed turbidity events: the effects of light deprivation on the seagrasses Halodule pinifolia and Halophila ovalis. Aquat Bot 65:105–121

    Article  Google Scholar 

  • Longstaff BJ, Loneragan NR, O’Donohue MJ, Dennison WC (1999) Effects of light deprivation on the survival and recovery of the seagrass Halophila ovalis (R.Br.) Hook. J Exp Mar Biol Ecol 234:1–27

    Article  Google Scholar 

  • Mackey P, Collier CJ, Lavery PS (2007) Effects of experimental reduction of light availability on the seagrass Amphibolis griffithi. Mar Ecol Prog Ser 342:117–126

    Article  CAS  Google Scholar 

  • Marba N, Duarte CM (1998) Rhizome elongation and seagrass clonal growth. Mar Ecol Prog Ser 174

    Google Scholar 

  • Masini R, Cary J, Simpson C, McComb A (1995) Effects of light and temperature on the photosynthesis of temperate meadow-forming seagrasses in Western Australia. Aquat Bot 49:239–254

    Article  Google Scholar 

  • Maxwell P, Stevens A, Udy J, Savige G (2007) Monitoring of Lyngbya majuscula distribution and the environmental conditions of Moreton Bay South East Queensland Healthy Waterways Partnership. Brisbane, Australia

    Google Scholar 

  • Maxwell PS, Pitt KA, Burfeind DD, Olds AD, Babcock RC, Connolly RM (2014) Phenotypic plasticity promotes persistence following severe events: physiological and morphological responses of seagrass to flooding. J Ecol 102:54–64

    Article  Google Scholar 

  • Maxwell P, Eklof, van Katwijk MM, O’Brien KR, de la Torre-Castro M, Boström C, Bouma TJ, Krause-jensen D, Unsworth RKF, van Tussenbroek Bl (2017) The fundamental role of ecological feedback mechanisms in seagrass ecosystems – a review. Biol Rev 92(3):1521–1538

    Google Scholar 

  • McMahon K, Lavery PS (2014) Canopy-scale modifications of the seagrass Amphibolis griffithii in response to and recovery from light reduction. J Exp Mar Biol Ecol 455:38–44

    Article  Google Scholar 

  • McMahon K, Lavery PS, Mulligan M (2011) Recovery from the impact of light reduction on the seagrass Amphibolis griffithii, insights for dredging management. Mar Pollut Bull 62:270–283

    Article  CAS  PubMed  Google Scholar 

  • McMahon K, Collier C, Lavery PS (2013) Identifying robust bioindicators of light stress in seagrasses: a meta-analysis. Ecol Ind 30:7–15

    Article  Google Scholar 

  • Moore KA (2004) Influence of seagrasses on water quality in shallow regions of the lower Chesapeake Bay. J Coastal Res 162–178

    Google Scholar 

  • Moore KA, Wetzel RL, Orth RJ (1997) Seasonal pulses of turbidity and their relations to eelgrass (Zostera marina L.) survival in an estuary. J Exp Mar Biol Ecol 215:115–134

    Article  Google Scholar 

  • Morel A (1978) Available, usable, and stored radiant energy in relation to marine photosynthesis. Deep Sea Res 25:673–688

    Article  CAS  Google Scholar 

  • Mvungi EF, Lyimo TJ, Björk M (2012) When Zostera marina is intermixed with Ulva, its photosynthesis is reduced by increased pH and lower light, but not by changes in light quality. Aquat Bot 102:44–49

    Article  Google Scholar 

  • Negri AP, Flores F, Mercurio P, Mueller JF, Collier CJ (2015) Lethal and sub-lethal chronic effects of the herbicide diuron on seagrass. Aquat Toxicol 165:73–83

    Article  CAS  PubMed  Google Scholar 

  • Nyström M, Norström AV, Blenckner T, de la Torre-Castro M, Eklöf JS, Folke C, Österblom H, Steneck RS, Thyresson M, Troell M (2012) Confronting feedbacks of degraded marine ecosystems. Ecosystems 15:695–710

    Article  Google Scholar 

  • O’Brien KR, Tuazon D, Grinham A, Callaghan DP (2012) Impact of mud deposited by 2011 flood on marine and estuarine habitats in Moreton Bay. Brisbane: Healthy Waterways

    Google Scholar 

  • O’Brien KR, Waycott M, Maxwell P, Kendrick GA, Udy JW, Ferguson AJ, Kilminster K, Scanes P, Mckenzie LJ, McMahon K, Adams MP, Samper-Villarreal J, Collier C, Lyons M, Mumby PJ, Radke L, Christianen M, Dennison WC (2017) Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance. Mar Pollut Bull

    Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S (2006a) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Article  Google Scholar 

  • Orth RJ, Harwell MC, Inglis GJ (2006b) Ecology of seagrass seeds and seagrass dispersal processes. In Larkum AWD, Orth RJ, Duarte CM (ed) Seagrasses: biology, ecology and conservation. Springer, The Netherlands.

    Google Scholar 

  • Ow Y, Collier C, Uthicke S (2015) Responses of three tropical seagrass species to CO2 enrichment. Mar Biol 162:1005–1017

    Article  CAS  Google Scholar 

  • Petus C, Collier C, Devlin M, Rasheed M, McKenna S (2014) Using MODIS data for understanding changes in seagrass meadow health: a case study in the Great Barrier Reef (Australia). Mar Environ Res 98:68–85

    Article  CAS  PubMed  Google Scholar 

  • Preen AR, Lee Long WJ, Coles RG (1995) Flood and cyclone related loss, and partial recovery, of more than 1000 km2 of seagrass in Hervey Bay, Queensland, Australia. Aquat Bot 52:3–17

    Article  Google Scholar 

  • Ralph PJ, Tomasko D, Moore K, Seddon S, Macinnis-Ng CM (2006) Human impacts on seagrasses: eutrophication, sedimentation, and contamination. In: Larkum AWD (ed) Seagrasses: biology, ecology and conservation. Springer, pp 567–593

    Google Scholar 

  • Ralph P, Durako M, Enriquez S, Collier C, Doblin M (2007) Impact of light limitation on seagrasses. J Exp Mar Biol Ecol 350:176–193

    Article  Google Scholar 

  • Rasheed MA, McKenna SA, Carter AB, Coles RG (2014) Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia. Mar Pollut Bull 83:491–499

    Article  CAS  PubMed  Google Scholar 

  • Rheuban JE, Berg P, McGlathery KJ (2014) Multiple timescale processes drive ecosystem metabolism in eelgrass (Zostera marina) meadows. Mar Ecol Prog Ser 507:1–13

    Article  Google Scholar 

  • Ruiz-Montoya L, Lowe R, Van Niel K, Kendrick G (2012) The role of hydrodynamics on seed dispersal in seagrasses. Limnol Oceanogr 57:1257–1265

    Article  Google Scholar 

  • Saunders MI, Leon J, Phinn SR, Callaghan DP, O’Brien KR, Roelfsema CM, Lovelock CE, Lyons MB, Mumby PJ (2013) Coastal retreat and improved water quality mitigate losses of seagrass from sea level rise. Glob Change Biol 19:2569–2583

    Article  Google Scholar 

  • Silberstein K, Chiffings A, McComb A (1986) The loss of seagrass in Cockburn Sound, Western Australia. III. The effect of epiphytes on productivity of Posidonia australis Hook. f. Aquat Bot 24:355–371

    Article  Google Scholar 

  • Suding KN, Gross KL, Houseman GR (2004) Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol 19:46–53

    Article  PubMed  Google Scholar 

  • Unsworth RKF, Collier CJ, Waycott M, McKenzie LJ, Cullen-Unsworth LC (2015) A framework for the resilience of seagrass ecosystems. Mar Pollut Bull 100:34–46

    Article  CAS  PubMed  Google Scholar 

  • van der Heide T, van Nes E, Geerling G, Smolders A, Bouma T, van Katwijk M (2007) Positive feedbacks in Seagrass Ecosystems: implications for success in conservation and restoration. Ecosystems 10:1311–1322

    Article  Google Scholar 

  • van Dongen JT, Gupta KJ, Ramírez-Aguilar SJ, Araújo WL, Nunes-Nesi A, Fernie AR (2011) Regulation of respiration in plants: A role for alternative metabolic pathways. J Plant Physiol 168:1434–1443

    Article  CAS  PubMed  Google Scholar 

  • Van Duin EH, Blom G, Los FJ, Maffione R, Zimmerman R, Cerco CF, Dortch M, Best EP (2001) Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth. Hydrobiologia 444:25–42

    Article  Google Scholar 

  • Van Katwijk M, Vergeer L, Schmitz G, Roelofs J (1997) Ammonium toxicity in eelgrass Zostera marina. Mar Ecol Prog Ser 157:159–173

    Article  Google Scholar 

  • van Katwijk MM, Bos AR, de Jonge VN, Hanssen LSAM, Hermus DCR, de Jong DJ (2009) Guidelines for seagrass restoration: importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Mar Pollut Bull 58:179–188

    Article  CAS  PubMed  Google Scholar 

  • van Katwijk MM, Thorhaug A, Marbà N, Orth RJ, Duarte CM, Kendrick GA, Althuizen IHJ, Balestri E, Bernard G, Cambridge ML, Cunha A, Durance C, Giesen W, Han Q, Hosokawa S, Kiswara W, Komatsu T, Lardicci C, Lee KS, Meinesz A, Nakaoka M, O’Brien KR, Paling EI, Pickerell C, Ransijn AMA, Verduin JJ (2016) Global review of seagrass restoration and the importance of large-scale planting. J Appl Ecol 53:567–578

    Article  Google Scholar 

  • Walker DI, McComb AJ (1992) Seagrass degradation in Australian coastal waters. Mar Pollut Bull 25:191–194

    Article  Google Scholar 

  • Walker D, Lukatelich R, Bastyan G, McComb A (1989) Effect of boat moorings on seagrass beds near Perth, Western Australia. Aquat Bot 36:69–77

    Article  Google Scholar 

  • Wazniak CE, Hall MR, Carruthers TJ, Sturgis B, Dennison WC, Orth RJ (2007) Linking water quality to living resources in a mid-Atlantic lagoon system, USA. Ecol Appl 17:S64–S78

    Article  Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci 106(30):12377–12381

    Google Scholar 

  • Waycott M, Longstaff BJ, Mellors J (2005) Seagrass population dynamics and water quality in the Great Barrier Reef region: a review and future research direction. Mar Pollut Bull 51(1):343–350

    Google Scholar 

  • Webster IT, Harris GP (2004) Anthropogenic impacts on the ecosystems of coastal lagoons: modelling fundamental biogeochemical processes and management implications. Mar Freshw Res 55:67–78

    Article  Google Scholar 

  • Westphalen G, Collings G, Wear R, Fernandes M, Bryars S, Cheshire A (2004) A review of seagrass loss on the Adelaide metropolitan coastline. South Australian Research and Development Institute

    Google Scholar 

  • Wooldridge SA (2016) Preventable fine sediment export from the Burdekin River catchment reduces coastal seagrass abundance and increased dugong mortality within the Townsville region of the Great Barrier Reef, Australia. Mar Pollut Bull

    Google Scholar 

  • Zimmerman RC (2003) A biooptical model of irradiance distribution and photosynthesis in seagrass canopies. Limnol Oceanogr 48:568–585

    Article  Google Scholar 

  • Zimmerman RC (2006) Light and photosynthesis in seagrass meadows. In: Larkum AWD (ed) Seagrasses: biology, ecology and conservation. Springer, pp 303–321

    Google Scholar 

Download references

Acknowledgements

Contribution by CC was funded by the National Environmental Science Program, Tropical Water Quality hub. The concepts presented here arise in part from discussions with numerous colleagues from the Australian Centre for Ecological Analysis and Synthesis (ACEAS) working group on Australian Seagrass Habitats. Contribution by MPA and CC were funded by Great Barrier Reef Foundation grant: Seagrass connectivity, community composition and growth: attributes of a resilient GBR. We thank two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine R. O’Brien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Brien, K.R. et al. (2018). Seagrass Resistance to Light Deprivation: Implications for Resilience. In: Larkum, A., Kendrick, G., Ralph, P. (eds) Seagrasses of Australia. Springer, Cham. https://doi.org/10.1007/978-3-319-71354-0_10

Download citation

Publish with us

Policies and ethics