Skip to main content

Evaluation of Linked, Open Data Sources for Mining Adverse Drug Reaction Signals

  • Conference paper
  • First Online:
Book cover Internet Science (INSCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10673))

Included in the following conference series:

Abstract

Linked Data is an emerging paradigm of publishing data in the Internet, accompanied with semantic annotations in a machine understandable fashion. The Internet provides vast data, useful in identifying Public Health trends, e.g. concerning the use of drugs, or the spread of diseases. Current practice of exploiting such data includes their combination from different sources, in order to reinforce their exploitation potential, based on unstructured data management practices and the Linked Data paradigm. In this paper, we present the design, the challenges and an evaluation of a Linked Data model to be used in the context of a platform exploiting social media and bibliographic data sources (namely, Twitter and PubMed), focusing on the application of Adverse Drug Reaction (ADR) signal identification. More specifically, we present the challenges of exploiting Bio2RDF as a Linked Open Data source in this respect, focusing on collecting, updating and normalizing data with the ultimate goal of identifying ADR signals, and evaluate the presented model against three reference evaluation datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.w3.org/RDF/.

  2. 2.

    https://www.w3.org/OWL/.

  3. 3.

    http://www.hermit-reasoner.com/.

  4. 4.

    https://www.w3.org/wiki/HCLSIG/LODD/Interlinking.

  5. 5.

    https://github.com/bio2rdf/bio2rdf-scripts/wiki/RDFization-Guide.

  6. 6.

    https://www.openphacts.org/.

  7. 7.

    https://www.w3.org/Submission/SWRL/.

  8. 8.

    http://data.bioontology.org.

  9. 9.

    https://virtuoso.openlinksw.com/rdf/.

References

  1. World Health Organization: WHO collaborating centre for international drug monitoring: the importance of pharmacovigilance. World Health Organization (2002)

    Google Scholar 

  2. Sultana, J., Cutroneo, P., Trifirò, G.: Clinical and economic burden of adverse drug reactions. J. Pharmacol. Pharmacother. 4, S73–S77 (2013)

    Article  Google Scholar 

  3. National Safety and Quality Health Service Standards Australian Commission on Safety and Quality in Health Care: Australian Commission on Safety and Quality in Health Care (ACSQHC), Sydney, September 2011

    Google Scholar 

  4. Council for International Organizations of Medical Sciences (CIOMS): Practical Aspects of Signal Detection in Pharmacovigilance, Council for International Organizations of Medical Sciences. Report of CIOMS Working Group VIII. CIOMS, Geneva (2010)

    Google Scholar 

  5. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284, 28–37 (2001)

    Article  Google Scholar 

  6. Harpaz, R., Callahan, A., Tamang, S., Low, Y., Odgers, D., Finlayson, S., Jung, K., LePendu, P., Shah, N.H.: Text mining for adverse drug events: the promise, challenges, and state of the art. Drug Saf. 37, 777–790 (2014)

    Article  Google Scholar 

  7. Apache UIMA - Apache UIMA. http://uima.apache.org/

  8. Heath, T., Bizer, C.: Linked data: evolving the web into a global data space. Synth. Lect. Semant. Web Theory Technol. 1, 1–136 (2011)

    Article  Google Scholar 

  9. Natsiavas, P., Maglaveras, N., Koutkias, V.: A public health surveillance platform exploiting free-text sources via natural language processing and linked data: application in adverse drug reaction signal detection using PubMed and Twitter. In: Riaño, D., Lenz, R., Reichert, M. (eds.) KR4HC/ProHealth 2016. LNCS (LNAI), vol. 10096, pp. 51–67. Springer, Cham (2017). doi:10.1007/978-3-319-55014-5_4

    Chapter  Google Scholar 

  10. Samwald, M., Jentzsch, A., Bouton, C., Kallesøe, C.S., Willighagen, E., Hajagos, J., Marshall, M.S., Prud’hommeaux, E., Hassenzadeh, O., Pichler, E., Stephens, S.: Linked open drug data for pharmaceutical research and development. J. Cheminform. 3, 19 (2011)

    Article  Google Scholar 

  11. Callahan, A., Cruz-Toledo, J., Ansell, P., Dumontier, M.: Bio2RDF release 2: improved coverage, interoperability and provenance of life science linked data. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 200–212. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38288-8_14

    Chapter  Google Scholar 

  12. Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., Maciejewski, A., Arndt, D., Wilson, M., Neveu, V., Tang, A., Gabriel, G., Ly, C., Adamjee, S., Dame, Z.T., Han, B., Zhou, Y., Wishart, D.S.: DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 42, D1091–D1097 (2014)

    Article  Google Scholar 

  13. Hassanzadeh, O., Zhu, Q., Freimuth, R., Boyce, R.: Extending the “web of drug identity” with knowledge extracted from United States product labels. AMIA Jt. Summits Transl. Sci. Proc. 2013, 64–68 (2013)

    Google Scholar 

  14. Home - ClinicalTrials.gov. https://clinicaltrials.gov/

  15. Kuhn, M., Letunic, I., Jensen, L.J., Bork, P.: The SIDER database of drugs and side effects. Nucleic Acids Res. 44, D1075–D1079 (2016)

    Article  Google Scholar 

  16. Hu, Y., Bajorath, J.: Learning from “big data”: compounds and targets. Drug Discov. Today 19, 357–360 (2014)

    Article  Google Scholar 

  17. Gray, A.J.G., Groth, P., Loizou, A., Askjaer, S., Brenninkmeijer, C., Burger, K., Chichester, C., Evelo, C.T., Goble, C., Harland, L., Pettifer, S., Thompson, M., Waagmeester, A., Williams, A.J.: Applying linked data approaches to pharmacology: architectural decisions and implementation. Semant. Web 5, 101–113 (2014)

    Article  Google Scholar 

  18. Groth, P., Loizou, A., Gray, A.J.G., Goble, C., Harland, L., Pettifer, S.: API-centric linked data integration: the open PHACTS discovery platform case study. Web Semant. Sci. Serv. Agents World Wide Web 29, 12–18 (2014)

    Article  Google Scholar 

  19. Herrero-Zazo, M., Segura-Bedmar, I., Hastings, J., Martínez, P.: DINTO: using OWL ontologies and SWRL rules to infer drug-drug interactions and their mechanisms. J. Chem. Inf. Model. 55, 1698–1707 (2015)

    Article  Google Scholar 

  20. Mitraka, E., Waagmeester, A., Burgstaller-Muehlbacher, S., Schriml, L.M., Su, A.I., Good, B.M.: Wikidata: a platform for data integration and dissemination for the life sciences and beyond. bioRxiv (2015)

    Google Scholar 

  21. Putman, T.E., Lelong, S., Burgstaller-Muehlbacher, S., Waagmeester, A., Diesh, C., Dunn, N., Munoz-Torres, M., Stupp, G.S., Wu, C., Su, A.I., Good, B.M.: WikiGenomes: an open web application for community consumption and curation of gene annotation data in Wikidata. Database (Oxford) 2017 (2017)

    Google Scholar 

  22. Jovanovik, M., Trajanov, D.: Consolidating drug data on a global scale using Linked Data. J. Biomed. Semant. 8, 3 (2017)

    Article  Google Scholar 

  23. Boyce, R.D., Ryan, P.B., Norén, G.N., Schuemie, M.J., Reich, C., Duke, J., Tatonetti, N.P., Trifirò, G., Harpaz, R., Overhage, J.M., Hartzema, A.G., Khayter, M., Voss, E.A., Lambert, C.G., Huser, V., Dumontier, M.: Bridging islands of information to establish an integrated knowledge base of drugs and health outcomes of interest. Drug Saf. 37, 557–567 (2014)

    Article  Google Scholar 

  24. Knowledge Base Workgroup of the Observational Health Data Sciences and Informatics (OHDSI) Collaborative: Large-scale adverse effects related to treatment evidence standardization (LAERTES): an open scalable system for linking pharmacovigilance evidence sources with clinical data. J. Biomed. Semant. 8, 11 (2017)

    Google Scholar 

  25. Zaman, S., Sarntivijai, S., Abernethy, D.: Use of biomedical ontologies for integration of biological knowledge for learning and prediction of adverse drug reactions. Gene Regul. Syst. Bio. 11 (2017)

    Google Scholar 

  26. Zhu, Q., Tao, C., Shen, F., Chute, C.G.: Exploring the pharmacogenomics knowledge base (PharmGKB) for repositioning breast cancer drugs by leveraging web ontology language (OWL) and cheminformatics approaches. Pac. Symp. Biocomput. 172–182 (2014)

    Google Scholar 

  27. Kozák, J., Nečaský, M., Pokorný, J.: Drug encyclopedia – linked data application for physicians. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 41–56. Springer, Cham (2015). doi:10.1007/978-3-319-25010-6_3

    Chapter  Google Scholar 

  28. Doulaverakis, C., Nikolaidis, G., Kleontas, A., Kompatsiaris, I.: GalenOWL: Ontology-based drug recommendations discovery. J. Biomed. Semant. 3, 14 (2012)

    Article  Google Scholar 

  29. Doulaverakis, C., Nikolaidis, G., Kleontas, A., Kompatsiaris, I.: Panacea, a semantic-enabled drug recommendations discovery framework. J. Biomed. Semant. 5, 13 (2014)

    Article  Google Scholar 

  30. Dalleau, K., Marzougui, Y., Da Silva, S., Ringot, P., Ndiaye, N.C., Coulet, A.: Learning from biomedical linked data to suggest valid pharmacogenes. J. Biomed. Semant. 8, 16 (2017)

    Article  Google Scholar 

  31. Zong, N., Kim, H., Ngo, V., Harismendy, O.: Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations. Bioinformatics 33, 2337–2344 (2017)

    Article  Google Scholar 

  32. Chen, B., Ding, Y., Wild, D.J., Barabsi, A., Vidal, M.: Assessing drug target association using semantic linked data. PLoS Comput. Biol. 8, e1002574 (2012)

    Article  Google Scholar 

  33. Muñoz, E., Nováček, V., Vandenbussche, P.-Y.: Using drug similarities for discovery of possible adverse reactions. AMIA Annu. Symp. Proc. 2016, 924–933 (2016)

    Google Scholar 

  34. Nazario, D.C., Dantas, M.A.R., Todesco, J.L.: Knowledge engineering: survey of methodologies, techniques and tools. IEEE Lat. Am. Trans. 12, 1553–1559 (2014)

    Article  Google Scholar 

  35. Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernández-López, M.: The NeOn methodology for ontology engineering. In: Suárez-Figueroa, M., Gómez-Pérez, A., Motta, E., Gangemi, A. (eds.) Ontology Engineering in a Networked World, pp. 9–34. Springer, Heidelberg (2012). doi:10.1007/978-3-642-24794-1_2

    Chapter  Google Scholar 

  36. Whirl-Carrillo, M., McDonagh, E.M., Hebert, J.M., Gong, L., Sangkuhl, K., Thorn, C.F., Altman, R.B., Klein, T.E.: Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 92, 414–417 (2012)

    Article  Google Scholar 

  37. Szklarczyk, D., Santos, A., von Mering, C., Jensen, L.J., Bork, P., Kuhn, M., von Mering, C., Jensen, L.J., Bork, P., Kuhn, M.: STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 44, D380–D384 (2016)

    Article  Google Scholar 

  38. ATC - Structure and principles. https://www.whocc.no/atc/structure_and_principles/

  39. Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32, D267–D270 (2004)

    Article  Google Scholar 

  40. RxNorm Overview. https://www.nlm.nih.gov/research/umls/rxnorm/overview.html

  41. Salvadores, M., Alexander, P.R., Musen, M.A., Noy, N.F.: BioPortal as a dataset of linked biomedical ontologies and terminologies in RDF. Semant. Web 4, 277–284 (2013)

    Google Scholar 

  42. Dodds, L., Davis, I.: Linked data patterns (2011). http://patterns.dataincubator.org/

  43. Denning, P.J.: The locality principle. Commun. ACM 48, 19 (2005)

    Article  Google Scholar 

  44. Harpaz, R., Odgers, D., Gaskin, G., DuMouchel, W., Winnenburg, R., Bodenreider, O., Ripple, A., Szarfman, A., Sorbello, A., Horvitz, E., White, R.W., Shah, N.H.: A time-indexed reference standard of adverse drug reactions. Sci. Data. 1, 140043 (2014)

    Article  Google Scholar 

  45. Ryan, P.B., Schuemie, M.J., Welebob, E., Duke, J., Valentine, S., Hartzema, A.G.: Defining a reference set to support methodological research in drug safety. Drug Saf. 36, 33–47 (2013)

    Article  Google Scholar 

  46. Coloma, P.M., Avillach, P., Salvo, F., Schuemie, M.J., Ferrajolo, C., Pariente, A., Fourrier-Réglat, A., Molokhia, M., Patadia, V., van der Lei, J., Sturkenboom, M., Trifirò, G.: A reference standard for evaluation of methods for drug safety signal detection using electronic healthcare record databases. Drug Saf. 36, 13–23 (2012)

    Article  Google Scholar 

  47. SPARQL 1.1 Overview. https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/

  48. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for Linked Data: a survey. Semant. Web 7, 63–93 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantelis Natsiavas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Natsiavas, P., Maglaveras, N., Koutkias, V. (2017). Evaluation of Linked, Open Data Sources for Mining Adverse Drug Reaction Signals. In: Kompatsiaris, I., et al. Internet Science. INSCI 2017. Lecture Notes in Computer Science(), vol 10673. Springer, Cham. https://doi.org/10.1007/978-3-319-70284-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70284-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70283-4

  • Online ISBN: 978-3-319-70284-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics