Skip to main content

Emerging HAB Research Issues in Freshwater Environments

  • Chapter
  • First Online:
Global Ecology and Oceanography of Harmful Algal Blooms

Part of the book series: Ecological Studies ((ECOLSTUD,volume 232))

Abstract

Freshwater harmful algal blooms (HABs) have been a major challenge for many decades, affecting water supplies, recreational use of water and aquatic ecosystems. The blooms of most concern, and that receive the greatest research attention, are toxic cyanobacteria. Much of the research focus has been on understanding the response of cyanobacterial species and communities to environmental conditions. As cyanobacteria are prokaryotes and have relatively simple genomes, they have been the focus of molecular studies that complement traditional ecological and physiological approaches. These complementary approaches have provided new insights into understanding how cyanobacteria species respond to environmental conditions. Molecular and physiological studies are increasingly focussed on strain variability and the implications for managing and modelling blooms and toxin production. Additionally, there have been substantial advances in techniques used to measure and monitor blooms including remote sensing, pigment sensors and molecular methods. Despite the research which has improved understanding of the physiology of cyanobacteria, and an enhanced ability to measure HABs at the scales needed to link environmental drivers and blooms, there has been a less rapid development of deterministic models. Improved coordination and collaboration amongst disciplines is essential to enhance our ability to predict the timing and extent of harmful cyanobacterial blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre-Gómez R, Salmerón-García O, Gómez-Rodríguez G et al (2016) Use of unmanned aerial vehicles and remote sensors in urban lakes studies in Mexico. Int J Remote Sens. https://doi.org/10.1080/01431161.2016.1264031

  • Al-Tebrineh J, Pearson LA, Yasar SA et al (2012) A multiplex qPCR targeting hepato- and neurotoxigenic cyanobacteria of global significance. Harmful Algae 15:19–25

    Article  CAS  Google Scholar 

  • Amaral V, Bonilla S, Aubriot L (2014) Growth optimization of the invasive cyanobacterium Cylindrospermopsis raciborskii in response to phosphate fluctuations. Eur J Phycol 49:134–141

    Article  CAS  Google Scholar 

  • Aparicio Medrano E, Uittenbogaard RE, Dionisio Pires LM et al (2013) Coupling hydrodynamics and buoyancy regulation in Microcystis aeruginosa for its vertical distribution in lakes. Ecol Model 248:41–56

    Article  Google Scholar 

  • Bai F, Liu R, Yang Y et al (2014) Dissolved organic P use by the invasive freshwater diazotroph cyanobacterium. Cylindrospermopsis raciborskii. Harmful Algae 39:112–120

    Article  CAS  Google Scholar 

  • Bastien C, Cardin R, Veilleux E et al (2011) Performance evaluation of phycocyanin probes for monitoring of cyanobacteria. J Environ Monit 13:110–118

    Article  PubMed  CAS  Google Scholar 

  • Berdalet E, Kudela R, Banas NS et al (2018) GlobalHAB: fostering international coordination on harmful algal bloom research in aquatic systems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 425–447

    Google Scholar 

  • Berdalet E, Tester PA (2018) Key questions and recent research advances on harmful algal blooms in benthic systems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 261–286

    Google Scholar 

  • Borges H, Wood SA, Puddick J et al (2016) Intracellular, environmental and biotic interactions influence recruitment of benthic Microcystis (Cyanophyceae) in a shallow eutrophic lake. J Plankton Res. https://doi.org/10.1093/plankt/fbw046

  • Bowling LC, Baker PD (1996) Major cyanobacterial bloom in the Barwon-Darling River, Australia, in 1991, and underlying limnological conditions. Mar Freshw Res 47:643–657

    Article  CAS  Google Scholar 

  • Brasell K, Heath M, Ryan K et al (2015) Successional change in microbial communities of benthic Phormidium-dominated biofilms. Microb Ecol 69:254–266

    Article  PubMed  CAS  Google Scholar 

  • Brookes JD, Cayelan CC (2011) Resilience to blooms. Science 334:46–47

    Article  PubMed  CAS  Google Scholar 

  • Bullerjahn GS, Robert M, McKay A et al (2016) Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study. Harmful Algae 54:223–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Burford MA, Beardall J, Willis A et al (2016) Understanding the winning strategies used by the bloom forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54:44–53

    Article  PubMed  Google Scholar 

  • Burford MA, Davis TW, Orr PT et al (2014) Nutrient-related changes in the toxicity of field blooms of the cyanobacterium Cylindrospermopsis raciborskii. FEMS Microbiol Ecol 89:135–148

    Article  PubMed  CAS  Google Scholar 

  • Burkholder JM, Glibert PM (2009) The importance of intraspecific variability in harmful algae – preface to a collection of topical papers. Harmful Algae 8:744–745

    Article  Google Scholar 

  • Carey CC, Ibelings BW, Hoffman EP et al (2012) Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46:1394–1407

    Article  PubMed  CAS  Google Scholar 

  • Carraro E, Guyennon N, Hamilton D et al (2012) Coupling high-resolution measurements to a three-dimensional lake model to assess the spatial and temporal dynamics of the cyanobacterium Planktothrix rubescens in a medium-sized lake. Hydrobiologia 698:77–95

    Article  CAS  Google Scholar 

  • Cires S, Ballot A (2016) A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae 54:21–43

    Article  PubMed  CAS  Google Scholar 

  • Coles VJ, Hood RR (2016) Approaches and challenges for linking marine biogeochemical models with the “omics” revolution. In: Glibert PM, Kana TM (eds) Aquatic microbial ecology and biogeochemistry: a dual perspective. Springer, Cham, pp 45–63

    Chapter  Google Scholar 

  • Davidson K, Gowen R, Harrison P, Fleming L, Hoagland P, Moschonas G (2014) Anthropogenic nutrients and harmful algae in coastal waters. J Environ Manage 146:206–216

    Article  PubMed  CAS  Google Scholar 

  • Davis TW, Berry DL, Boyer GL et al (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725

    Article  CAS  Google Scholar 

  • Davis TW, Harke MJ, Marcoval MA et al (2010) Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Aquat Microb Ecol 61:149–162

    Article  Google Scholar 

  • Dodds WK, Bouska WW, Eitzmann JI et al (2008) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43:12–19

    Article  CAS  Google Scholar 

  • Dolman AM, Rücker J, Pick FR et al (2012) Cyanobacteria and cyanotoxins: the influence of N versus P. PLoS One 7(6):e38757. https://doi.org/10.1371/journal.pone.0038757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Domingues RB, Barbosa AB, Sommer U et al (2011) Ammonium, nitrate and phytoplankton interactions in a freshwater tidal estuarine zone: potential effects of cultural eutrophication. Aquat Sci 73:331–343

    Article  CAS  Google Scholar 

  • Dowle E, Pochon X, Banks J et al (2016) Targeted gene enrichment and high throughput sequencing for environmental biomonitoring: a case study using freshwater macroinvertebrates. Mol Ecol Resour 16:1240–1254

    Article  PubMed  CAS  Google Scholar 

  • Downing JA, Watson SB, McCauley E (2001) Predicting cyanobacteria dominance in lakes. Can J Fish Aquat Sci 58:1905–1908

    Article  Google Scholar 

  • Echenique-Subiabre I, Dalle C et al (2016) Application of a spectrofluorimetric tool (BBE BenthoTorch) for the monitoring of potentially toxic benthic cyanobacteria in rivers. Water Res 101:341–350

    Article  PubMed  CAS  Google Scholar 

  • Fetscher AE, Howard MDA, Stancheva R et al (2015) Wadeable streams as widespread sources of benthic cyanotoxins in California, USA. Harmful Algae 49:105–116

    Article  CAS  Google Scholar 

  • Finlay K, Patoine A, Donald D et al (2010) Experimental evidence that pollution with urea can degrade water quality in phosphorus-rich lakes of the Northern Great Plains. Limnol Oceanogr 55:1213–1230

    Article  CAS  Google Scholar 

  • Franks PJS (2018) Recent advances in modelling of harmful algal blooms. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 359–377

    Google Scholar 

  • Garcia-Pichel F, Wojciechowski MF (2009) The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS One 4(11):e7801. https://doi.org/10.1371/journal.pone.0007801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glibert PM, Al-Azri A, Allen JI et al (2018a) Key questions and recent research advances on harmful algal blooms in relation to nutrients and eutrophication. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 229–259

    Google Scholar 

  • Glibert PM, Allen JI, Bouwman AF et al (2010) Modeling of HABs and eutrophication: status, advances, challenges. J Mar Syst 83:262–275

    Article  Google Scholar 

  • Glibert PM, Beusen AHW, Harrison JA et al (2018b) Changing land, sea- and airscapes: sources of nutrient pollution affecting habitat suitability for harmful algae. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 53–76

    Google Scholar 

  • Glibert PM, Burford MA (2017) Globally changing nutrient loads and harmful algal blooms: recent advances, new paradigms, and continuing challenges. Oceanography 30(1):58–69

    Article  Google Scholar 

  • Glibert PM, Pitcher GC, Bernard S et al (2018c) Advancements and continuing challenges of emerging technologies and tools for detecting harmful algal blooms, their antecedent conditions and toxins, and applications in predictive models. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 339–357

    Google Scholar 

  • Glibert PM, Wilkerson FP, Dugdale RC et al (2016) Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol Oceanogr 61:165–197

    Article  CAS  Google Scholar 

  • Gobler CJ, Burkholder JM, Davis TW et al (2016) The dual role of N supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54:87–97

    Article  PubMed  CAS  Google Scholar 

  • Gugger M, Lenoir S, Berger C et al (2005) First report in a river in France of the benthic cyanobacterium Phormidium favosum producing anatoxin-a associated with dog neurotoxicosis. Toxicon 45(7):919–928

    Article  PubMed  CAS  Google Scholar 

  • Hamilton DP, Carey CC, Arvola L et al (2014a) A Global Lake Ecological Observatory Network (GLEON) for synthesising high–frequency sensor data for validation of deterministic ecological models. Inland Waters 5:49–56

    Article  Google Scholar 

  • Hamilton DP, Salmaso N, Paerl HW (2016) Mitigating harmful cyanobacterial blooms: strategies for control of nitrogen and phosphorus loads. Aquat Ecol 50(3):351–366

    Article  CAS  Google Scholar 

  • Hamilton DP, Wood SA, Dietrich DR et al (2014b) Costs of harmful blooms of freshwater cyanobacteria. In: Sharma NK, Rai AK, Stal LJ (eds) Cyanobacteria: an economic perspective, 1st edn. Wiley, New York, pp 245–256

    Google Scholar 

  • Harke MJ, Gobler CJ (2013) Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to N stress, P stress, and growth on organic matter. PLoS One 8(7):e69834. https://doi.org/10.1371/journal.pone.0069834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harke MJ, Gobler CJ (2015) Daily transcriptome changes reveal the role of N in controlling microcystin synthesis and nutrient transport in the toxic cyanobacterium, Microcystis aeruginosa. BMC Genomics 16:1068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harke MJ, Steffen MM, Gobler CJ et al (2016) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54:4–20

    Article  PubMed  Google Scholar 

  • Harris TD, Smith VH, Graham JL et al (2016) Combined effects of N and P and nitrate to ammonia ratios on cyanobacterial metabolite concentrations in eutrophic Midwestern USA reservoirs. Inland Waters 6:199–210

    Article  CAS  Google Scholar 

  • Hellweger FL (2015) 100 Years since Streeter and Phelps: it is time to update the biology in our water quality models. Environ Sci Technol 49:6372–6373

    Article  PubMed  CAS  Google Scholar 

  • Hellweger FL, Fredrick ND, McCarthy MJ et al (2016) Dynamic, mechanistic, molecular-level modelling of cyanobacteria: Anabaena and N interaction. Environ Microbiol 18:2721–2731

    Article  PubMed  CAS  Google Scholar 

  • Hellweger FL, Kravchuk ES, Novotny V et al (2008) Agent-based modeling of the complex life cycle of a cyanobacterium (Anabaena) in a shallow reservoir. Limnol Oceanogr 53:1227–1241

    Article  Google Scholar 

  • Hemple SME, Heath MW, Olds J et al (2014) Monitoring benthic Phormidium blooms using imagery gathered with an unmanned aerial vehicle. Greater Wellington Regional Council. Victoria University Report. June 2014, 26 pp

    Google Scholar 

  • Hense I, Burchard H (2010) Modelling cyanobacteria in shallow coastal seas. Ecol Model 221:238–244

    Article  Google Scholar 

  • Huisman J, Sharples J, Stroom J et al (2004) Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85:2960–2970

    Article  Google Scholar 

  • Humbert JF, Quiblier C, Gugger M (2010) Molecular approaches for monitoring potential toxic marine and freshwater phytoplankton species. Anal Bioanal Chem 397:1723–1732

    Article  PubMed  CAS  Google Scholar 

  • Hunter PD, Tyler AN, Willby NJ et al (2008) The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: a case study using high spatial resolution time-series airborne remote sensing. Limnol Oceanogr 53:2391–2406

    Article  Google Scholar 

  • Hunter PD, Tyler AN, Carvalho L et al (2010) Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes. Remote Sens Environ 114:2705–2718

    Article  Google Scholar 

  • Ibelings BW, Vonk M, Los FH et al (2003) Fuzzy modeling of cyanobacterial surface waterblooms: validation with NOAA-AVHRR satellite images. Ecol Appl 13:1456–1472

    Article  Google Scholar 

  • Islam M, Kitazawa D, Park H (2012) Numerical modeling on toxin produced by predominant species of cyanobacteria within the ecosystem of Lake Kasumigaura, Japan. Procedia Environ Sci 13:166–193

    Article  CAS  Google Scholar 

  • Izaguirre G, Taylor WD (2007) Geosmin and MIB events in a new reservoir in southern California. Water Sci Technol 55:9–14

    Article  PubMed  CAS  Google Scholar 

  • Izydorczyk K, Tarczynska M, Jurczak T et al (2005) Measurement of phycocyanin fluorescenceas an online early warning system for cyanobacteria in reservoir intake water. Environ Toxicol 20:425–430

    Article  PubMed  CAS  Google Scholar 

  • Kardinaal WEA, Janse I, Kamst-van Agterveld MP et al (2007) Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes. Aquat Microb Ecol 2(48):1–12

    Article  Google Scholar 

  • Kasinak J, Holt BM, Chrislock ME et al (2015) Benchtop fluorometry of phycocyanin as a rapid approach for estimating cyanobacterial biovolume. J Plankton Res 37:248–257

    Article  CAS  Google Scholar 

  • Kleinteich J, Hildebrand F, Wood SA et al (2014) Diversity of toxin and non-toxin containing cyanobacterial mats of meltwater ponds on the Antarctic Peninsula: a pyrosequencing approach. Antarct Sci 26:521–532

    Article  Google Scholar 

  • Kong Y, Lou I, Zhang Y et al (2014) Using an online fluorescence probe for rapid monitoring of cyanobacteria in Macau freshwater reservoir. Hydrobiologia 741:33–49

    Article  CAS  Google Scholar 

  • Kreft J-U, Plugge CM, Grimm V et al (2013) Mighty small: observing and modeling individual microbes becomes big science. Proc Natl Acad Sci USA 110:18027–18028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kromkamp J, Walsby AE (1990) A computer model of buoyancy and vertical migration in cyanobacteria. J Plankton Res 12:161–183

    Article  Google Scholar 

  • Kudela R, Palacios SL, Austerberry DC (2015) Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters. Remote Sens Environ 167:196–205

    Article  Google Scholar 

  • Kudela RM, Raine R, Pitcher G et al (2018) Establishment, goals, and legacy of the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) Program. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 27–49

    Google Scholar 

  • Kumagai M, Nakano S, Jiao C et al (2000) Effect of cyanobacterial blooms on thermal stratification. Limnology 1:191–195

    Article  Google Scholar 

  • Kurmayer R, Deng L, Entfellner E (2016) Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria. Harmful Algae 54:69–86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurmayer R, Sivonen K, Wilmotte A et al (2017) Molecular tools for the detection and quantification of toxigenic cyanobacteria. Wiley, Hoboken, NJ, 276 p

    Google Scholar 

  • Lage S, Burian A, Rasmussne U et al (2016) BMAA extraction of cyanobacteria samples: which method to choose? Environ Sci Pollut Res 23(1):338–350

    Article  CAS  Google Scholar 

  • Lakeman MB, von Dassow P, Cattolico RA (2009) The strain concept in phytoplankton ecology. Harmful Algae 8:746–758

    Article  Google Scholar 

  • Li X, Dreher TW, Li R (2016) An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae 54:54–68

    Article  PubMed  CAS  Google Scholar 

  • Lurling M, Eshetu F, Faassen EJ et al (2012) Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw Biol 58:552–559

    Article  Google Scholar 

  • Lv J, Wu H, Chen M (2011) Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica 41:48–56

    Article  CAS  Google Scholar 

  • Marinho MM, Gonçalves Souza MV, Lürling M (2013) Light and phosphate competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa is strain dependent. Microb Ecol 66:479–488

    Article  PubMed  CAS  Google Scholar 

  • Matthews MW, Bernard S, Robertson L (2012) A new algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in coastal and inland waters from MERIS. Remote Sens Environ 124:637–652

    Article  Google Scholar 

  • McAllister TG, Wood SA, Hawes I (2016) The rise of toxic benthic Phormidium proliferations: a review of their taxonomy, distribution, toxin content and factors regulating prevalence and increased severity. Harmful Algae 55:282–294

    Article  PubMed  CAS  Google Scholar 

  • Mez K, Hanselmann K, Preisig HR (1998) Environmental conditions in high mountain lakes containing toxic benthic cyanobacteria. Hydrobiologia 368(1–3):1–15

    Article  CAS  Google Scholar 

  • Mowe MAD, Mitrovic SM, Lim RP et al (2015) Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors. J Limnol 74:205–224

    Google Scholar 

  • Nilsson RH, Ryberg M, Kristiansson E et al (2006) Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS One 1(1):e59. https://doi.org/10.1371/journal.pone.0000059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Neil JM, Davis TW, Burford MA et al (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Article  CAS  Google Scholar 

  • Oh H-M, Lee SJ, Jang M-H, Yoon B-D (2000) Microcystin production by Microcystis aeruginosa in a P-limited chemostat. Appl Environ Microbiol 66:176–179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliver R, Hamilton DP, Brookes J et al (2012) Physiology, blooms and prediction of planktonic cyanobacteria. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, New York, pp 155–194

    Chapter  Google Scholar 

  • Orihel DM, Schindler DW, Ballard NC et al (2015) The “nutrient pump:” Iron-poor sediments fuel low nitrogen-to-phosphorus ratios and cyanobacterial blooms in polymictic lakes. Limnol Oceanogr 60:856–871

    Article  CAS  Google Scholar 

  • Paerl HW (2014) Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life 4(4):988–1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Paerl HW, Huisman J (2008) Climate - blooms like it hot. Science 320:57–58

    Article  PubMed  CAS  Google Scholar 

  • Prentice MJ, O’Brien KR, Hamilton DP et al (2015) High-and low-affinity phosphate uptake and its effect on phytoplankton dominance in a phosphate-depauperate lake. Aquat Microb Ecol 75:139–153

    Article  Google Scholar 

  • Puddick J, Prinsep MR, Wood SA et al (2016a) Modulation of microcystin congener abundance following N depletion of a Microcystis batch culture. Aquat Ecol 50:235–246

    Article  CAS  Google Scholar 

  • Puddick J, Wood SA, Hawes I et al (2016b) Fine-scale cryogenic sampling of planktonic microbial communities: application to toxic cyanobacterial blooms. Limnol Oceanogr Methods 14:600–609

    Article  CAS  Google Scholar 

  • Quiblier C, Wood SA, Echenique-Subiabre I et al (2013) A review of current knowledge on toxic benthic freshwater cyanobacteria–ecology, toxin production and risk management. Water Res 47:5464–5479

    Article  CAS  Google Scholar 

  • Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, Cambridge, p 535. https://doi.org/10.1017/CBO9780511542145

  • Rose KC, Weathers KC, Hetherington AL et al (2016) Insights from the Global Lake Ecological Observatory Network (GLEON). Inland Waters 6:476–482

    Article  Google Scholar 

  • Rowe MD, Anderson EJ, Wynne TT et al (2016) Vertical distribution of buoyant Microcystis blooms in a Lagrangian particle tracking model for short-term forecasts in Lake Erie. J Geophys Res Oceans 121:5296–5314

    Article  Google Scholar 

  • Schagerl M, Müller B (2006) Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria. J Plant Physiol 163:709–716

    Article  PubMed  CAS  Google Scholar 

  • Scott JT, McCarthy MJ (2010) N fixation may not balance the N pool of lakes over timescales relevant to eutrophication management. Limnol Oceanogr 55:1265–1270

    Article  CAS  Google Scholar 

  • Shokralla S, Spall JL, Gibson JF et al (2012) Next generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805

    Article  PubMed  CAS  Google Scholar 

  • Smith F, Wood SA, Wilks T et al (2012) Survey of Scytonema (Cyanobacteria) and associated saxitoxins in the littoral zone of recreational lakes in Canterbury (New Zealand). Phycologia 51:542–551

    Article  CAS  Google Scholar 

  • Smith VH, Wood SA, McBride CG et al (2016) P and N loading restraints are essential for successful eutrophication control of Lake Rotorua, New Zealand. Inland Waters 6(2):273–283

    Article  CAS  Google Scholar 

  • Solomon C, Glibert P (2008) Urease activity in five phytoplankton species. Aquat Microb Ecol 52:149–157

    Article  Google Scholar 

  • Stucken K, John U, Cembella A et al (2010) The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications. PLoS One 5:e9235. https://doi.org/10.1371/journal.pone.0009235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F et al (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050

    Article  PubMed  CAS  Google Scholar 

  • Toming K, Kutser T, Laas A et al (2016) First experiences in mapping lake water quality parameters with Sentinel-2 MSI Imagery. Remote Sens 8:640

    Article  Google Scholar 

  • Vaitomaa J, Rantala A, Halinen K et al (2003) Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes. Appl Environ Microb 69:7289–7297

    Article  CAS  Google Scholar 

  • Van de Waal DB, Verspagen JM, Lürling M et al (2009) The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. Ecol Lett 12:1326–1335

    Article  PubMed  Google Scholar 

  • Van der Merwe D, Price KP (2015) Harmful algal bloom characterization at ultra-high spatial and temporal resolution using small unmanned aircraft systems. Toxins 7:1065–1078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Mooy BAS, Fredricks HF, Pedler BE et al (2009) Phytoplankton in the ocean substitute lipids in response to P scarcity. Nature 458:69–72

    Article  PubMed  CAS  Google Scholar 

  • Vezie C, Brient L, Sivonen K et al (1998) Variation of microcystin content of cyanobacterial blooms and isolated strains in Grand-Lieu lake (France). Microb Ecol 35:126–135

    Article  PubMed  CAS  Google Scholar 

  • Vintila S, El-Shehawy R (2007) Ammonium ions inhibit N fixation but do not affect heterocyst frequency in the bloom-forming cyanobacterium Nodularia spumigena strain AV1. Microbiology 153:3704–3712

    Article  PubMed  CAS  Google Scholar 

  • Vintila S, Jonasson S, Wadensten H et al (2010) Proteomic profiling of the Baltic Sea cyanobacterium Nodularia spumigena strain AV1 during ammonium supplementation. J Proteomics 73(9):1670–1679

    Article  PubMed  CAS  Google Scholar 

  • Visser PM, Verspagen JMH, Sandrini G et al (2016) How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54:145–159

    Article  PubMed  CAS  Google Scholar 

  • Wagner C, Adrian R (2009) Cyanobacteria dominance: quantifying the effects of climate change. Limnol Oceanogr 54:2460–2468

    Article  Google Scholar 

  • Wallace BB, Hamilton DP (2000) Simulation of water bloom formation in the cyanobacterium Microcystis aeruginosa. J Plankton Res 22:1127–1138

    Article  Google Scholar 

  • Welker M, Sejnohova D, von Dohren H et al (2007) Seasonal shifts in chemotype composition of Microcystis sp. Communities in the pelagial and the sediment of a shallow reservoir. Limnol Oceanogr 52:609–619

    Article  CAS  Google Scholar 

  • Wells ML, Karlson B (2018) Harmful algal blooms in a changing ocean. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 77–90

    Google Scholar 

  • Willis A, Adams MP, Chuang AW et al (2015) Constitutive toxin production and different optimal N concentrations leads to variation in toxin yield with three ecotypes of Cylindrospermopsis raciborskii ((Woloszynska) Seenayya et Subba Raju). Harmful Algae 47:27–34

    Article  CAS  Google Scholar 

  • Willis A, Chuang AW, Burford MA (2016a) N fixation by the reluctant diazotroph Cylindrospermopsis raciborskii (Cyanophyceae). J Phycol 52:854–862

    Article  PubMed  CAS  Google Scholar 

  • Willis A, Chuang AW, Woodhouse JN et al (2016b) Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium Cylindrospermopsis raciborskii. Toxicon 119:307–310

    Article  PubMed  CAS  Google Scholar 

  • Willis A, Posselt AJ, Burford MA (2017) Cylindrospermopsis raciborskii is highly adapted to very low P. Eur J Phycol. https://doi.org/10.1080/09670262.2017.1286524

    Book  Google Scholar 

  • Wood SA, Puddick J, Borges H et al (2015) Potential effects of climate change on cyanobacterial toxin production. In: Botana LM, Louzao C, Vilariño N et al (eds) Climate change and marine and freshwater toxins. Springer, Berlin, pp 155–180

    Google Scholar 

  • Wood SA, Rueckert A, Hamilton DP et al (2011) Switching toxin production on and off: intermittent microcystin synthesis in a Microcystis bloom. Environ Microbiol Rep 3:118–124

    Article  PubMed  CAS  Google Scholar 

  • Wood SA, Selwood AI, Rueckert A et al (2007) First report of homoanatoxin-a and associated dog neurotoxicosis in New Zealand. Toxicon 50:292–301

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Zeng B, Li R et al (2011) Physiological regulation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in response to inorganic P limitation. Harmful Algae 15:53–58

    Article  CAS  Google Scholar 

  • Wynne TT, Stumpf RP, Tomlinson MC et al (2008) Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes. Int J Remote Sens 29:3665–3672

    Article  Google Scholar 

  • Zamyadi A, Mcquaid N, Prevost M et al (2012) Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources. J Environ Monit 14:579–588

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele A. Burford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burford, M.A., Hamilton, D.P., Wood, S.A. (2018). Emerging HAB Research Issues in Freshwater Environments. In: Glibert, P., Berdalet, E., Burford, M., Pitcher, G., Zhou, M. (eds) Global Ecology and Oceanography of Harmful Algal Blooms . Ecological Studies, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-70069-4_20

Download citation

Publish with us

Policies and ethics