Skip to main content

Machine Learning and Knowledge Extraction in Digital Pathology Needs an Integrative Approach

  • Conference paper
  • First Online:
Book cover Towards Integrative Machine Learning and Knowledge Extraction

Abstract

During the last decade pathology has benefited from the rapid progress of image digitizing technologies, which led to the development of scanners, capable to produce so-called Whole Slide images (WSI) which can be explored by a pathologist on a computer screen comparable to the conventional microscope and can be used for diagnostics, research, archiving and also education and training. Digital pathology is not just the transformation of the classical microscopic analysis of histological slides by pathologists to just a digital visualization. It is a disruptive innovation that will dramatically change medical work-flows in the coming years and help to foster personalized medicine. Really powerful gets a pathologist if she/he is augmented by machine learning, e.g. by support vector machines, random forests and deep learning. The ultimate benefit of digital pathology is to enable to learn, to extract knowledge and to make predictions from a combination of heterogenous data, i.e. the histological image, the patient history and the *omics data. These challenges call for integrated/integrative machine learning approach fostering transparency, trust, acceptance and the ability to explain step-by-step why a decision has been made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Regulation (EU) 2016/679 of the European Parliament and of the council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/EC (General Data Protection Regulation).

References

  1. Madabhushi, A., Lee, G.: Image analysis and machine learning in digital pathology: Challenges and opportunities. Med. Image Anal. 33, 170–175 (2016)

    Article  Google Scholar 

  2. Holzinger, A.: Trends in interactive knowledge discovery for personalized medicine: Cognitive science meets machine learning. IEEE Intell. Inf. Bull. 15, 6–14 (2014)

    Google Scholar 

  3. Su, X., Kang, J., Fan, J., Levine, R.A., Yan, X.: Facilitating score and causal inference trees for large observational studies. J. Mach. Learn. Res. 13, 2955–2994 (2012)

    MATH  MathSciNet  Google Scholar 

  4. Huppertz, B., Holzinger, A.: Biobanks – a source of large biological data sets: open problems and future challenges. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 317–330. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43968-5_18

    Chapter  Google Scholar 

  5. Mattmann, C.A.: Computing: A vision for data science. Nature 493, 473–475 (2013)

    Article  Google Scholar 

  6. Otasek, D., Pastrello, C., Holzinger, A., Jurisica, I.: Visual data mining: effective exploration of the biological universe. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 19–33. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43968-5_2

    Chapter  Google Scholar 

  7. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature 521, 452–459 (2015)

    Article  Google Scholar 

  8. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical dirichlet processes. J. Am. Stat. Assoc. 101, 1566–1581 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Houlsby, N., Huszar, F., Ghahramani, Z., Hernndez-lobato, J.M.: Collaborative gaussian processes for preference learning. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems (NIPS 2012), pp. 2096–2104 (2012)

    Google Scholar 

  10. Holzinger, A.: Introduction to machine learning and knowledge extraction (make). Mach. Learn. Knowl. Extr. 1, 1–20 (2017)

    Article  Google Scholar 

  11. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: A review of bayesian optimization. Proc. IEEE 104, 148–175 (2016)

    Article  Google Scholar 

  12. Kim, W., Choi, B.J., Hong, E.K., Kim, S.K., Lee, D.: A taxonomy of dirty data. Data Min. Knowl. Disc. 7, 81–99 (2003)

    Article  MathSciNet  Google Scholar 

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  14. Lee, S., Holzinger, A.: Knowledge discovery from complex high dimensional data. In: Michaelis, S., Piatkowski, N., Stolpe, M. (eds.) Solving Large Scale Learning Tasks. Challenges and Algorithms. LNCS (LNAI), vol. 9580, pp. 148–167. Springer, Cham (2016). doi:10.1007/978-3-319-41706-6_7

    Chapter  Google Scholar 

  15. Holzinger, A., Plass, M., Holzinger, K., Crisan, G.C., Pintea, C.M., Palade, V.: A glass-box interactive machine learning approach for solving NP-hard problems with the human-in-the-loop (2017). arXiv:1708.01104

  16. Holzinger, A.: Interactive machine learning for health informatics: When do we need the human-in-the-loop? Brain Informatics (BRIN) 3 (2016)

    Google Scholar 

  17. Holzinger, A., Plass, M., Holzinger, K., Crişan, G.C., Pintea, C.-M., Palade, V.: Towards interactive machine learning (iML): applying ant colony algorithms to solve the traveling salesman problem with the human-in-the-loop approach. In: Buccafurri, F., Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-ARES 2016. LNCS, vol. 9817, pp. 81–95. Springer, Cham (2016). doi:10.1007/978-3-319-45507-5_6

    Chapter  Google Scholar 

  18. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17, 37–54 (1996)

    Google Scholar 

  19. Valiant, L.G.: A theory of the learnable. Commun. ACM 27, 1134–1142 (1984)

    Article  MATH  Google Scholar 

  20. Holzinger, A.: On topological data mining. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 331–356. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43968-5_19

    Chapter  Google Scholar 

  21. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010)

    Article  Google Scholar 

  22. Demichelis, F., Barbareschi, M., Dalla Palma, P., Forti, S.: The virtual case: a new method to completely digitize cytological and histological slides. Virchows Arch. 441, 159–161 (2002)

    Article  Google Scholar 

  23. Bloice, M., Simonic, K.M., Holzinger, A.: On the usage of health records for the design of virtual patients: a systematic review. BMC Med. Inform. Decis. Mak. 13, 103 (2013)

    Article  Google Scholar 

  24. Turkay, C., Jeanquartier, F., Holzinger, A., Hauser, H.: On computationally-enhanced visual analysis of heterogeneous data and its application in biomedical informatics. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 117–140. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43968-5_7

    Chapter  Google Scholar 

  25. Ferreira, R., Moon, B., Humphries, J., Sussman, A., Saltz, J., Miller, R., Demarzo, A.: The virtual microscope. In: Proceedings of the AMIA Annual Fall Symposium, pp. 449–453 (1997)

    Google Scholar 

  26. Barbareschi, M., Demichelis, F., Forti, S., Palma, P.D.: Digital pathology: Science fiction? Int. J. Surg. Pathol. 8, 261–263 (2000). PMID: 11494001

    Article  Google Scholar 

  27. Hamilton, P.W., Wang, Y., McCullough, S.J.: Virtual microscopy and digital pathology in training and education. Apmis 120, 305–315 (2012)

    Article  Google Scholar 

  28. Dandu, R.: Storage media for computers in radiology. Indian J. Radiol. Imag. 18, 287 (2008)

    Article  Google Scholar 

  29. Reeder, M.M., Felson, B.: Gamuts in Radiology: Comprehensive Lists of Roentgen Differential Diagnosis. Pergamon Press (1977)

    Google Scholar 

  30. Goolsby, A.W., Olsen, L., McGinnis, M., Grossmann, C.: Clincial data as the basic staple of health learning - Creating and Protecting a Public Good. National Institute of Health (2010)

    Google Scholar 

  31. McDermott, J.E., Wang, J., Mitchell, H., Webb-Robertson, B.J., Hafen, R., Ramey, J., Rodland, K.D.: Challenges in biomarker discovery: combining expert insights with statistical analysis of complex omics data. Expert Opinion Med. Diagn. 7, 37–51 (2013)

    Article  Google Scholar 

  32. Swan, A.L., Mobasheri, A., Allaway, D., Liddell, S., Bacardit, J.: Application of machine learning to proteomics data: Classification and biomarker identification in postgenomics biology. Omics-a J. Integr. Biol. 17, 595–610 (2013)

    Article  Google Scholar 

  33. Jeanquartier, F., Jean-Quartier, C., Schreck, T., Cemernek, D., Holzinger, A.: Integrating open data on cancer in support to tumor growth analysis. In: Renda, M.E., Bursa, M., Holzinger, A., Khuri, S. (eds.) ITBAM 2016. LNCS, vol. 9832, pp. 49–66. Springer, Cham (2016). doi:10.1007/978-3-319-43949-5_4

    Chapter  Google Scholar 

  34. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. (CSUR) 41, 1–41 (2008)

    Article  Google Scholar 

  35. Lafon, S., Keller, Y., Coifman, R.R.: Data fusion and multicue data matching by diffusion maps. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1784–1797 (2006)

    Article  Google Scholar 

  36. Blanchet, L., Smolinska, A.: Data fusion in metabolomics and proteomics for biomarker discovery. In: Jung, K. (ed.) Statistical Analysis in Proteomics. MMB, vol. 1362, pp. 209–223. Springer, New York (2016). doi:10.1007/978-1-4939-3106-4_14

    Chapter  Google Scholar 

  37. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2009)

    Book  MATH  Google Scholar 

  38. Bishop, C.M.: Pattern Recognition and Machine Learning (2006)

    Google Scholar 

  39. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)

    Article  Google Scholar 

  40. Kotropoulos, C., Pitas, I.: Segmentation of ultrasonic images using support vector machines. Pattern Recogn. Lett. 24, 715–727 (2003)

    Article  MATH  Google Scholar 

  41. Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classificatio. IEEE Trans. Med. Imaging 26, 1357–1365 (2007)

    Article  Google Scholar 

  42. Orlando, J.I., Blaschko, M.: Learning fully-connected CRFs for blood vessel segmentation in retinal images. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 634–641. Springer, Cham (2014). doi:10.1007/978-3-319-10404-1_79

    Google Scholar 

  43. Bauer, S., Nolte, L.-P., Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 354–361. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23626-6_44

    Chapter  Google Scholar 

  44. El-Naqa, I., Yang, Y., Wernick, M.N., Galatsanos, N.P., Nishikawa, R.M.: A support vector machine approach for detection of microcalcifications. IEEE Trans. Med. Imaging 21, 1552–1563 (2002)

    Article  Google Scholar 

  45. Han, J.W., Breckon, T.P., Randell, D.A., Landini, G.: The application of support vector machine classification to detect cell nuclei for automated microscopy. Mach. Vis. Appl. 23, 15–24 (2012)

    Article  Google Scholar 

  46. Breiman, L.: Random forests. Mach. Learn. 45, 4–32 (2001)

    MATH  Google Scholar 

  47. Criminisi, A., Jamie, S. (eds.): Decision Forests for Computer Vision and Medical Image Analysis. Springer, London (2013)

    Google Scholar 

  48. Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shotton, J., Thomas, O.M., Das, T., Jena, R., Price, S.J.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33454-2_46

    Chapter  Google Scholar 

  49. Glocker, B., Pauly, O., Konukoglu, E., Criminisi, A.: Joint classification-regression forests for spatially structured multi-object segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 870–881. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33765-9_62

    Chapter  Google Scholar 

  50. Richmond, D., Kainmueller, D., Glocker, B., Rother, C., Myers, G.: Uncertainty-driven forest predictors for vertebra localization and segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 653–660. Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_80

    Chapter  Google Scholar 

  51. Criminisi, A.: Anatomy detection and localization in 3D medical images. In: Criminisi, A., Shotton, J. (eds.) Decision Forests for Computer Vision and Medical Image Analysis. Advances in Computer Vision and Pattern Recognition. Springer, London (2013)

    Chapter  Google Scholar 

  52. Štern, D., Ebner, T., Urschler, M.: From local to global random regression forests: exploring anatomical landmark localization. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 221–229. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_26

    Chapter  Google Scholar 

  53. Å tern, D., Ebner, T., Urschler, M.: Automatic localization of locally similar structures based on the scale-widening random regression forest. In: IEEE International Symposium on Biomedical Imaging (2017)

    Google Scholar 

  54. Hebb, D.: The Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  55. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Mathe. Biophys. 5, 115–133 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  56. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  57. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet Classification with Deep Convolutional Neural Networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  58. Singh, D., Merdivan, E., Psychoula, I., Kropf, J., Hanke, S., Geist, M., Holzinger, A.: Human activity recognition using recurrent neural networks. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2017. LNCS, vol. 10410, pp. 267–274. Springer, Cham (2017). doi:10.1007/978-3-319-66808-6_18

    Chapter  Google Scholar 

  59. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)

    Article  Google Scholar 

  60. Liu, Y., Gadepalli, K., Norouzi, M., Dahl, G.E., Kohlberger, T., Boyko, A., Venugopalan, S., Timofeev, A., Nelson, P.Q., Corrado, G.S., Hipp, J.D., Peng, L., Stumpe, M.C.: Detecting cancer metastases on gigapixel pathology images. arXiv: 1703.02442 (2017)

  61. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)

    Article  Google Scholar 

  62. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Proceedings Medical Image Computing and Computer-Assisted Intervention (2015)

    Google Scholar 

  63. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010)

    Article  Google Scholar 

  64. Cai, J., Lu, L., Xie, Y., Xing, F., Yang, L.: Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 674–682. Springer, Cham (2017). doi:10.1007/978-3-319-66179-7_77

    Chapter  Google Scholar 

  65. Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 230–238. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_27

    Chapter  Google Scholar 

  66. Rozantsev, A., Lepetit, V., Fua, P.: On rendering synthetic images for training an object detector. Comput. Vis. Image Underst. 137, 24–37 (2015)

    Article  Google Scholar 

  67. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  68. Nie, D., Trullo, R., Petitjean, C., Ruan, S., Shen, D.: Medical image synthesis with context-aware generative adversarial networks. arXiv:1612.05362 (2016). Accepted MICCAI’17

  69. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  70. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

    Google Scholar 

  71. Malle, B., Kieseberg, P., Schrittwieser, S., Holzinger, A.: Privacy aware machine learning and the right to be forgotten. ERCIM News (Special Theme: Machine Learning) 107, 22–23 (2016)

    Google Scholar 

  72. Fosch Villaronga, E., Kieseberg, P., Li, T.: Humans forget, machines remember: Artificial intelligence and the right to be forgotten. Computer Security Law Review (2017)

    Google Scholar 

  73. Malle, B., Giuliani, N., Kieseberg, P., Holzinger, A.: The more the merrier - federated learning from local sphere recommendations. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2017. LNCS, vol. 10410, pp. 367–373. Springer, Cham (2017). doi:10.1007/978-3-319-66808-6_24

    Chapter  Google Scholar 

  74. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79228-4_1

    Chapter  Google Scholar 

  75. Kieseberg, P., Hobel, H., Schrittwieser, S., Weippl, E., Holzinger, A.: Protecting anonymity in data-driven biomedical science. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 301–316. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43968-5_17

    Chapter  Google Scholar 

  76. Schrittwieser, S., Kieseberg, P., Echizen, I., Wohlgemuth, S., Sonehara, N., Weippl, E.: An algorithm for k-anonymity-based fingerprinting. In: Shi, Y.Q., Kim, H.-J., Perez-Gonzalez, F. (eds.) IWDW 2011. LNCS, vol. 7128, pp. 439–452. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32205-1_35

    Chapter  Google Scholar 

  77. Kieseberg, P., Schrittwieser, S., Mulazzani, M., Echizen, I., Weippl, E.: An algorithm for collusion-resistant anonymization and fingerprinting of sensitive microdata. Electron. Markets 24, 113–124 (2014)

    Article  Google Scholar 

  78. Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM Comput. Surv. (CSUR) 15, 287–317 (1983)

    Article  MathSciNet  Google Scholar 

  79. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes. In: Broy, M., Denert, E. (eds.) Software Pioneers, pp. 245–262. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  80. Fruhwirt, P., Kieseberg, P., Weippl, E.: Using internal MySQL/InnoDB B-tree index navigation for data hiding. In: Peterson, G., Shenoi, S. (eds.) DigitalForensics 2015. IAICT, vol. 462, pp. 179–194. Springer, Cham (2015). doi:10.1007/978-3-319-24123-4_11

    Chapter  Google Scholar 

  81. Kieseberg, P., Schrittwieser, S., Mulazzani, M., Huber, M., Weippl, E.: Trees cannot lie: Using data structures for forensics purposes. In: Intelligence and Security Informatics Conference (EISIC), 2011 European, pp. 282–285. IEEE (2011)

    Google Scholar 

  82. Pantazos, K., Lauesen, S., Lippert, S.: De-identifying an EHR database-Anonymity, correctness and readability of the medical record. Stud. Health Technol. Inf. 169, 862–866 (2011)

    Google Scholar 

  83. Neamatullah, I., Douglass, M.M., Lehman, L.W.H., Reisner, A., Villarroel, M., Long, W.J., Szolovits, P., Moody, G.B., Mark, R.G., Clifford, G.D.: Automated de-identification of free-text medical records. BMC Med. Inform. Decis. Mak. 8, 32 (2008)

    Article  Google Scholar 

  84. Al-hegami, A.S.: A biomedical named entity recognition using machine learning classifiers and rich feature set. Int. J. Comput. Sci. Netw. Secur. 17, 170–176 (2017)

    Google Scholar 

  85. Settles, B.: Biomedical named entity recognition using conditional random fields and rich feature sets. In: International Joint Workshop on Natural Language Processing in Biomedicine and its Applications, pp. 104–107 (2004)

    Google Scholar 

  86. Mavromatis, G.: Biomedical named entity recognition using neural networks 2015, 1–9 (2015)

    Google Scholar 

  87. Goldberg, Y., Levy, O.: word2vec explained: deriving Mikolov et al. negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722 (2014)

  88. Sweeney, L.: k-anonymity: A model for protecting privacy. Int. J. Uncertainty, Fuzziness and Knowl.-Based Syst. 10, 557–570 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  89. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy beyond k-anonymity. In: Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006, p. 24. IEEE (2006)

    Google Scholar 

  90. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: IEEE 23rd International Conference on Data Engineering, ICDE 2007, pp. 106–115. IEEE (2007)

    Google Scholar 

  91. Nergiz, M.E., Atzori, M., Clifton, C.: Hiding the presence of individuals from shared databases. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 665–676. ACM (2007)

    Google Scholar 

  92. Wong, R.C.W., Li, J., Fu, A.W.C., Wang, K.: (\(\alpha \), k)-anonymity: an enhanced k-anonymity model for privacy preserving data publishing. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 754–759. ACM (2006)

    Google Scholar 

  93. Campan, A., Truta, T.M.: Data and structural k-Anonymity in social networks. In: Bonchi, F., Ferrari, E., Jiang, W., Malin, B. (eds.) PInKDD 2008. LNCS, vol. 5456, pp. 33–54. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01718-6_4

    Chapter  Google Scholar 

  94. Malle, B., Kieseberg, P., Weippl, E., Holzinger, A.: The right to be forgotten: towards machine learning on perturbed knowledge bases. In: Buccafurri, F., Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-ARES 2016. LNCS, vol. 9817, pp. 251–266. Springer, Cham (2016). doi:10.1007/978-3-319-45507-5_17

    Chapter  Google Scholar 

  95. Malle, B., Kieseberg, P., Holzinger, A.: DO NOT DISTURB? classifier behavior on perturbed datasets. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2017. LNCS, vol. 10410, pp. 155–173. Springer, Cham (2017). doi:10.1007/978-3-319-66808-6_11

    Chapter  Google Scholar 

  96. Rafique, A., Azam, S., Jeon, M., Lee, S.: Face-deidentification in images using restricted boltzmann machines. In: ICITST, pp. 69–73 (2016)

    Google Scholar 

  97. Chi, H., Hu, Y.H.: Face de-identification using facial identity preserving features. In: 2015 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2015, pp. 586–590 (2016)

    Google Scholar 

  98. Yu, F., Fienberg, S.E., Slavković, A.B., Uhler, C.: Scalable privacy-preserving data sharing methodology for genome-wide association studies. J. Biomed. Inform. 50, 133–141 (2014)

    Article  Google Scholar 

  99. Simmons, S., Sahinalp, C., Berger, B.: Enabling privacy-preserving GWASs in heterogeneous human populations. Cell Syst. 3, 54–61 (2016)

    Article  Google Scholar 

  100. Im, H.K., Gamazon, E.R., Nicolae, D.L., Cox, N.J.: On sharing quantitative trait GWAS results in an era of multiple-omics data and the limits of genomic privacy. Am. J. Hum. Genet. 90, 591–598 (2012)

    Article  Google Scholar 

  101. Knoppers, B.M., Dove, E.S., Litton, J.E., Nietfeld, J.J.: Questioning the limits of genomic privacy. Am. J. Hum. Genet. 91, 577–578 (2012)

    Article  Google Scholar 

  102. Aggarwal, C.C., Li, Y., Philip, S.Y.: On the hardness of graph anonymization. In: 2011 IEEE 11th International Conference on Data Mining (ICDM), pp. 1002–1007. IEEE (2011)

    Google Scholar 

  103. Baxter, J.: A model of inductive bias learning. J. Artif. Intell. Res. 12, 149–198 (2000)

    MATH  MathSciNet  Google Scholar 

  104. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 109–117. ACM (2004)

    Google Scholar 

  105. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

    MATH  Google Scholar 

  106. Parameswaran, S., Weinberger, K.Q.: Large margin multi-task metric learning. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23 (NIPS 2010), pp. 1867–1875 (2010)

    Google Scholar 

  107. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: The sequential learning problem. In: Bower, G.H. (ed.) The Psychology of Learning and Motivation, vol. 24, pp. 109–164. Academic Press, San Diego (1989)

    Google Scholar 

  108. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3, 128–135 (1999)

    Article  Google Scholar 

  109. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation of catastrophic forgeting in gradient-based neural networks. arXiv:1312.6211v3 (2015)

  110. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: A survey. J. Mach. Learn. Res. 10, 1633–1685 (2009)

    MATH  MathSciNet  Google Scholar 

  111. Sycara, K.P.: Multiagent systems. AI Mag. 19, 79 (1998)

    Google Scholar 

  112. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

    MATH  Google Scholar 

  113. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69, 118–121 (1974)

    Article  MATH  Google Scholar 

  114. Benediktsson, J.A., Swain, P.H.: Consensus theoretic classification methods. IEEE Trans. Syst. Man Cybern. 22, 688–704 (1992)

    Article  MATH  Google Scholar 

  115. Weller, S.C., Mann, N.C.: Assessing rater performance without a gold standard using consensus theory. Med. Decis. Making 17, 71–79 (1997)

    Article  Google Scholar 

  116. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95, 215–233 (2007)

    Article  Google Scholar 

  117. Roche, B., Guegan, J.F., Bousquet, F.: Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission. BMC Bioinf. 9 (2008)

    Google Scholar 

  118. Kok, J.R., Vlassis, N.: Collaborative multiagent reinforcement learning by payoff propagation. J. Mach. Learn. Res. 7, 1789–1828 (2006)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful for valuable comments from the international reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Holzinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Holzinger, A. et al. (2017). Machine Learning and Knowledge Extraction in Digital Pathology Needs an Integrative Approach. In: Holzinger, A., Goebel, R., Ferri, M., Palade, V. (eds) Towards Integrative Machine Learning and Knowledge Extraction. Lecture Notes in Computer Science(), vol 10344. Springer, Cham. https://doi.org/10.1007/978-3-319-69775-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69775-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69774-1

  • Online ISBN: 978-3-319-69775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics