Skip to main content

Rarity of Endemic Medicinal Plants and Role of Herbaria for Their Conservation Against Environmental Challenges

  • Chapter

Abstract

Endemic plants are restricted to particular place, topography and climate. There are about 34 hotspot range from Tropical Andes with 15,000 endemic plants and covering 5.0% of total endemic flora Atlantic forest with 8000 endemic plants and covering 2.7% of total endemic World flora etc. The small population size and distribution range of endemic species, their unique biological features, especially the loss of dispersal ability, tough ecological specialization, and predicted low genetic diversity, render them extremely vulnerable to environmental changes. Because population size and population identity can influence growth and survival differently across environmental stress gradients. But endemic species grows naturally in a single geographical area, the size of which could be either narrow or relatively large and not all endemic species are rare, just as not all rare species must necessarily be endemic. Serious consequences for biodiversity/deforestation and forest degradation are the habitat loss mainly due to climatic changes for vegetation clearing, mostly for agricultural expansion and thus considered to be the most important driver of population decline and species extinctions worldwide. The impact of deforestation is more severe in hotspots containing high concentrations of globally endemic species. Other than climate change herbarium collections used for investigations include documentation of shifts in plant biodiversity with increasing urbanization, population extinction of environmentally sensitive plants, conservation priorities for taxa in endangered habitats, and human-induced reductions in individual plant size. The Pakistan Museum of Natural History (PMNH) being unique of its kind and paying major role for combating most of the issues for endemic plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aarssen LW, Turkington R (1985) Biotic specialization between neighboring genotypes in Lolium perenne and Trifolium repens from a permanent pasture. J Ecol 73:605–614

    Article  Google Scholar 

  • Aizen MA, Feinsinger P (1994a) Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest in Argentina. Ecology 75:330–351

    Article  Google Scholar 

  • Aizen MA, Feinsinger P (1994b) Habitat fragmentation, native insect pollinators, and feral Honey-bees in Argentine Chaco Serrano. Ecol Appl 4:378–392

    Article  Google Scholar 

  • Aizen MA, Ashworth L, Galetto L (2002) Reproductive success in fragmented habitats: do compatibility systems and pollination specialization matter? J Veg Sci 13:885–892

    Article  Google Scholar 

  • Ali SI (2008) Significance of flora with special reference to Pakistan. Pak J Bot 40(3):967–971

    Google Scholar 

  • Ali SI, Qaiser M (1986) A phytogeographic analysis of the phanerogams of Pakistan and Kashmir. Proc R Soc Edinb 89B:89–101

    Google Scholar 

  • Allison HE, Hobbs RJ (2006) Science and policy in natural resource management: understanding system complexity. Cambridge University Press, Cambridge, p 241

    Book  Google Scholar 

  • Ames M, Spooner DM (2008) DNA from herbarium specimens settles a controversy about origins of the European potato. Am J Bot 95:252–257

    Article  CAS  PubMed  Google Scholar 

  • Anderson D, Salick J, Moseley RK, Ou XK (2005) Conserving the sacred medicine mountains: a vegetation analysis of Tibetan sacred sites in Northwest Yunnan. Biodivers Conserv 14:3065–3091

    Article  Google Scholar 

  • Andren H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366

    Article  Google Scholar 

  • Antonovics J, Hood ME, Thrall PH, Abrams JY, Duthie GM (2003) Herbarium studies on the distribution of anther-smut fungus (Microbotryum violaceum) and Silene species (Caryophyllaceae) in the eastern United States. Am J Bot 90:1522–1531

    Article  PubMed  Google Scholar 

  • Applequist WL, Mcglinn DJ, Miller M, Long QG, Miller JS (2007) How well do herbarium data predict the location of present populations? A test using Echniacea species in Missouri. Biodivers Conserv 16:1397–1407

    Article  Google Scholar 

  • Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421

    Article  Google Scholar 

  • Auld G, Guldbrandsen LH, McDermott CL (2008) Certification schemes and the impacts of forests and forestry. Annu Rev Environ Resour 33:187–211

    Article  Google Scholar 

  • Bajracharya S R, Mool P K, Shrestha B R (2007) Impact of climate change on Himalayan Glaciers and Glacial Lakes: case studies on GLOF and associated hazards in Nepal and Bhutan. Intergrated Centre for International Mountain Development, Kathmandu, 230p

    Google Scholar 

  • Bakker JP, Berendse F (1999) Constraints in the restoration of ecological diversity in grasslands and heathland communities. Trends Ecol Evol 14:63–68

    Article  CAS  PubMed  Google Scholar 

  • Balick MJ, Elisabetsky E, Laird SA (eds) (1996) Medicinal resources of the tropical forest: biodiversity and its importance to human health. Columbia University Press, New York

    Google Scholar 

  • Barik SK, Haridasan K, Lakadong NJ (2007) Medicinal plant resources of Meghalaya: endemism, threat status and consumption pattern. ENVIS Forestry Bull 7:17–26

    Google Scholar 

  • Barnett SC, Kohn JR (1991) Genetic and evolutionary consequences of small population size in plants. In: Falk DA, Holsinger KE (eds) Genetic and conservation of rare plants. Oxford University Press, New York, p 283

    Google Scholar 

  • Bascompte J, Jordano P (2006) The structure of plant-animal mutualistic networks. In: Pascual M, Dunne J (eds) Ecological networks. Oxford University Press, Oxford, pp 143–159

    Google Scholar 

  • Batten KM, Scow KM, Davies KF, Harrison SP (2006) Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol Invasions 8:217–230

    Article  Google Scholar 

  • Batten KM, Scow KM, Espeland EK (2008) Soil microbial community associated with an invasive grass differentially impacts native plant performance. Microb Ecol 55:220–228

    Article  PubMed  Google Scholar 

  • Beerling DJ, Chaloner WG (1993) Evolutionary responses of stomatal density to global CO2 change. Biol J Lin Soc 48:343–353

    Article  Google Scholar 

  • Benning TL, LaPointe D, Atkinson CT, Vitousek PM (2002) Interactions of climate change with biological invasions and land use in the Hawaiian Islands: modelling the fate of endemic birds using a geographic information system. PANS 99(22):14246–14249

    Article  CAS  Google Scholar 

  • Berge G, Nordal I, Hestmark G (1998) The effect of breeding systems and pollination vectors on the genetic variation of small plant populations within an agricultural landscape. Oikos 81:17–29

    Article  Google Scholar 

  • Bibi T, Ahmad M, Mohammad TN, Jabeen R, Sultana S, Zafar M, Zain-ul-Abidin S (2015) The endemic medicinal plants of Northern Balochistan, Pakistan and their uses in traditional medicine. J Ethnopharmacol. doi:10.1016/j.jep.2015.06.050

    Article  PubMed  Google Scholar 

  • Binns SE, Baum BR, Arnason JT (2002) A taxonomic revision of Echinacea (Asteraceae). Syst Bot 27:610–632

    Google Scholar 

  • Booy G, Hendriks RJJ, Smulders MJM, Van Groenendael J M, Vosman B (2000) Genetic diversity and the survival of populations. Plant Biol 2:379–395

    Article  Google Scholar 

  • Bradstock RA, Bedward M, Scott J, Keith DA (1996) Simulation of the effect of spatial and temporal variation in fire regimes on the population viability of a Banksia species. Conserv Biol 10:776–784

    Article  Google Scholar 

  • Bramwell D, Raven PH, Synge H (2002) Implementing the global strategy for plant conservation. Plant Talk 30:32–37

    Google Scholar 

  • Brock MT, Weinig C, Galen C (2005) A comparison of phenotypic plasticity in the native dandelion Taraxacum ceratophorum and its invasive congener T. officinale. New Phytol 166:173–183

    Article  PubMed  Google Scholar 

  • Brown RP, Gerbarg PL, Ramazanov Z (2002) Rhodiola rosea: a phytomedicinal overview. HerbalGram 56:40–52

    Google Scholar 

  • Burgman MA, Grimson RC, Ferson S (1995) Inferring threat from scientific collections. Conserv Biol 9:923–928

    Article  Google Scholar 

  • Buza L, Young A, Thrall P (2000) Genetic erosion, inbreeding and reduced fitness in fragmented populations of the endangered tetraploid pea Swaisonia recta. Biol Conserv 93:177–186

    Article  Google Scholar 

  • Byg A, Salick J (2009) Local perspectives on a global phenomenon—climate change in Eastern Tibetan villages. Glob Environ Change 19:156–166

    Article  Google Scholar 

  • Cain SA (1944) Foundations of plant geography. Harper, New York

    Google Scholar 

  • Calinger KM, Queenborough S, Curtis PS (2013) Herbarium specimens reveal the footprint of climate change on flowering trends across north-central North America. Ecol Lett 16:1037–1044

    Article  PubMed  PubMed Central  Google Scholar 

  • Callmander MW, Phillipson PB, Schatz GE et al (2011) The endemic and non-endemic vascular flora of Madagascar updated. Plant Ecol Evol 144:121–125

    Article  Google Scholar 

  • CEPF is a joint initiative of l’Agence Française de Développement, Conservation International, the European Union, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. http://www.cepf.net/resources/hotspots/Hotspots-Revisited/Key-Findings/Pages/default.aspx

  • Chapin FS, Zavaleta ES, Eviner VT et al (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  CAS  PubMed  Google Scholar 

  • Cruzan MB (2001) Population size and fragmentation thresholds for the maintenance of genetic diversity in the herbaceous endemic Scuttellaria montana (Lamiaceae). Evolution 55:1569–1580

    Article  CAS  PubMed  Google Scholar 

  • Culley TM (2013) Why vouchers matter in botanical research. Appl Plant Sci. http://www.bioone.org/doi/pdf/10.3732/apps.1300076

  • Culley TM, Grubb TC (2003) Genetic effects of habitat fragmentation in Viola pubescens (Violaceae), a perennial herb with chasmogamous and cleistogamous flowers. Mol Ecol 12:2919–2930

    Article  PubMed  Google Scholar 

  • Dauvergne P, Lister J (2010) The prospects and limits of eco-consumerism: shopping our way to less deforestation? Organ Environ 23:132–154

    Article  Google Scholar 

  • Debuse V, King J, House A (2007) Effect of fragmentation, habitat loss and within-patch habitat characteristics on ant assemblages in semi-arid woodlands of eastern Australia. Landscape Ecol 22:731–745

    Article  Google Scholar 

  • Delisle F, Lavoie C, Jean M, Lachance D (2003) Reconstructing the spread of invasive plants: taking into account biases associated with herbarium specimens. J Biogeogr 30:1033–1042

    Article  Google Scholar 

  • DeWalt SJ, Denslow JS, Ickes K (2004) Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemia hirta. Ecology 85:471–483

    Article  Google Scholar 

  • Diamond JM (1989) Overview of recent extinctions. In: Western D, Pearl MC (eds) Conservation for the 21st century. Oxford University Press, Oxford, pp 37–41

    Google Scholar 

  • Didham RK et al (1996) Insects in fragmented forests: a functional approach. Trends Ecol Evol 11:255–260

    Article  CAS  PubMed  Google Scholar 

  • Dolan RW, Moore MM, Stephens JD (2011) Documenting effects of urbanization on flora using herbarium records. J Ecol 99:1055–1062

    Article  Google Scholar 

  • Droissart V, Hardy OJ, Sonké B, Dahdouh-Guebas F, Stévart T (2012) Subsampling herbarium collections to assess geographic diversity gradients: a case study with endemic Orchidaceae and Rubiaceae in Cameroon. Biotropica 44:44–52

    Article  Google Scholar 

  • Echeverria C, Coomesa D, Salas J et al (2006) Rapid deforestation and fragmentation of Chilean temperate forests. Biol Conserv 130:481–494

    Article  Google Scholar 

  • Eklabya S, Nakul C, Krishna PO (2010) Mountain biodiversity conservation and management: a paradigm shift in policies and practices in the Hindu Kush-Himalayas. Ecol Res 25(5):909–923

    Article  Google Scholar 

  • FAO (2006) Global Forest Resources Assessment 2005. Progress towards sustainable forest management. FAO Forestry Paper 147. FAO, Rome, Italy, 320p

    Google Scholar 

  • FAO (2009) Situación de los bosques del mundo 2009. FAO, Rome, p 158

    Google Scholar 

  • Feeley KJ (2012) Distributional migrations, expansions, and contractions of tropical plant species as revealed in dated herbarium records. Glob Change Biol 18:1335–1341

    Article  Google Scholar 

  • Flynn D, Gogol-Prokurat M, Nogeire T et al (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33

    Article  PubMed  Google Scholar 

  • Ford HA (2011) The causes of decline of birds of eucalypt woodlands: advances in our knowledge over the last 10 years. Emu 111:1–9

    Article  Google Scholar 

  • Frankham R (2005) Stress and adaptation in conservation genetics. J Evol Biol 18:750–755

    Article  CAS  PubMed  Google Scholar 

  • Franzén M, Larsson M, Nilsson SG (2009) Small localized population sizes and high habitat patch fidelity in a specialized solitary bee. J Insect Conserv 13:89–95

    Article  Google Scholar 

  • Funk VA, Zermoglio MF, Nasir N (1999) Testing the use of specimen collection data and GIS in biodiversity exploration and conservation decision making in Guyana. Biodivers Conserv 8:727–751

    Article  Google Scholar 

  • Gallagher RV, Hughes L, Leishman MR (2009) Phenological trends among Australian alpine species: using herbarium records to identify climate-change indicators. Aust J Bot 57:1–9

    Article  Google Scholar 

  • Gibbs HK, Ruesch AS, Achard F et al (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci U S A 107:16732–16737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golding JS (2001) Southern African herbaria and Red Data Lists. Taxon 50:593–602

    Article  Google Scholar 

  • Harrison S, Damschen E, Going BM (2009) Climate gradients, climate change, and special edaphic floras. Northeastern Naturalist 16:121–130

    Article  Google Scholar 

  • Hedenas L, Bisang I, Tehler A, Hamnede M, Jaederfelt K, Odelvik G (2002) A herbarium based method for estimates of temporal frequency changes: mosses in Sweden. Biol Conserv 105:321–331

    Article  Google Scholar 

  • Heyligers PC (1998) Some New South Wales coastal plant distributions: a comparison of herbarium records with transect survey data. Cunninghamia 5:645–664

    Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • http://unfccc.int/press/fact_sheets/items/4977.php

  • http://www.cbd.int/history/

  • http://www.unccd.int/convention/menu.php

  • IPCC (2007) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. In: Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE (eds) Cambridge University Press, Cambridge

    Google Scholar 

  • Işık K (2011) Rare and endemic species: why are they prone to extinction? Turk J Bot 35:411–417

    Google Scholar 

  • IUCN (1994) IUCN Red List categories. IUCN Species Survival Commission, Gland

    Google Scholar 

  • IUCN (2001) IUCN Red List categories and criteria: Version 3.1. IUCN Species Survival Commission, Gland

    Google Scholar 

  • IUCN (2004) IUCN Red List of threatened species. World Wide Web access: http://www.redlist.org/

  • IUCN & SSC (2004) Guidelines for using the IUCN Red List categories and criteria, Gland, Switzerland

    Google Scholar 

  • Jennersten O (1988) Pollination in Dianthus deltoides (Caryophyllaceae): effects of habitat fragmentation on visitation and seed set. Conserv Biol 2:359–366

    Article  Google Scholar 

  • Kaljund K, Jaaska V (2010) No loss of genetic diversity in small and isolated populations of Medicago sativa subsp. falcate. Biochem Syst Ecol 38:510–520

    Article  CAS  Google Scholar 

  • Kanninen M, Murdiyarso D, Seymour F et al (2007) Do trees grow on money? The implications of deforestation research for policies to promote REDD. CIFOR, Bogor, p 61

    Google Scholar 

  • Kearns CA et al (1998) Endangered mutualisms: the conservation of plant–pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Keutgen N, Chen K, Lenz F (1997) Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. J Plant Physiol 150:395–400

    Article  CAS  Google Scholar 

  • Khanum R, Grimm WG, Surveswaran S et al (2016) Cynanchum (Apocynaceae: Asclepiadoideae): a pantropical Asclepiadoid genus revisited. Taxon 65(3):467–486

    Article  Google Scholar 

  • Khanum R, Mumtaz AS, Kumar S. (2013) Predicting impacts of climate change on medicinal asclepiads of Pakistan using maxent modeling. Acta Oecologica 49:23–31

    Article  Google Scholar 

  • Kier G, Holger K, Tien ML et al (2009) A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci U S A 3(106):9322–9327

    Article  Google Scholar 

  • Knight TM, Steets JA, Ashman TL (2006) A quantitative synthesis of pollen supplementation experiments highlights the contribution of resource allocation to estimates of pollen limitation. Am J Bot 93:271–277

    Article  PubMed  Google Scholar 

  • Koopowitz H (2001) Orchids and their conservation. Batsford, London

    Google Scholar 

  • Koponen HS, Hellqvist H, Lindqvist-Kreuze H et al (2000) Occurrence of Peronospora sparsa (P. rubi) on cultivated and wild Rubus species in Finland and Sweden. Ann Appl Biol 137:107–112

    Article  Google Scholar 

  • Kropf M, Bernhardt KG (2004) The historical distribution of Anthyllis montana subsp. jacquinii (Fabaceae) in Austria: insights from herbarium material. In: Planta Europa, 4th European conference on the conservation of wild plants, 17–20 Sept 2004, Valencia, Spain. Available on the World Wide Web at http://www.nerium.net/plantaeuropaea/Download/Procedings/Kropf_Bernhart.pdf. Accessed 2 May 2005

  • Kruckeberg AR, Rabinowitz D (1985) Biological aspects of endemism in higher plants. Annu Rev Ecol Syst 16:447–479

    Article  Google Scholar 

  • Laliberté E, Wells JA, DeClerck F et al (2010) Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol Lett 13:76–86

    Article  PubMed  Google Scholar 

  • Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci U S A 108:3465–3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamont BB et al (1993) Population fragmentation may reduce fertility to zero in Banksia goodii—a demonstration of the Allee effect. Oecologia 94:446–450

    Article  PubMed  Google Scholar 

  • Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927

    Article  PubMed  Google Scholar 

  • Laurance WF (1991) Edge effects in tropical forest fragments: application of a model for the design of nature reserves. Biol Conserv 57:205–220

    Article  Google Scholar 

  • Lavoie C, Lachance D (2006) A new herbarium-based method for reconstructing the phenology of plant species across large areas. Am J Bot 93:512–516

    Article  PubMed  Google Scholar 

  • Law W, Salick J (2005) Human induced dwarfing of Himalayan snow lotus, Saussurea laniceps (Asteraceae). Proc Natl Acad Sci U S A 102:10218–10220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine JM, Kennedy T, Naeem S (2002) Neighbourhood effects of species diversity on biological invasions and their relationship to community patterns. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning. Oxford University Press, Oxford, pp 114–125

    Google Scholar 

  • Lienert J, Fischer M, Diemer M (2002) Local extinctions of the wetland specialist Swertia perennis L. (Gentianaceae) in Switzerland: a revisitation study based on herbarium records. Biol Conserv 103(1):65–76

    Article  Google Scholar 

  • Lister DL, Ower MAB, Jones MK (2010) Herbarium specimens expand the geographical and temporal range of germplasm data in phylogeographical studies. Taxon 59:1321–1323

    Google Scholar 

  • Macdougall AS, Loo JA, Clayden SR et al (1998) Defining conservation priorities for plant taxa in southeastern New Brunswick, Canada using herbarium records. Biol Conserv 86:325–338

    Article  Google Scholar 

  • Machaka-Houri N, Al-Zein MS, Westbury DB et al (2012) Reproductive success of the rare endemic Orchis galilaea (Orchidaceae) in Lebanon. Turk J Bot 36:677–682

    Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Mahomoodally MF, Gurib-Fakim A, Subratty AH (2005) Antimicrobial activities and phytochemical profiles of endemic medicinal plants of Mauritius. J Pharma Biol 43(3):237–242. doi:10.1080/13880200590928825

    Article  Google Scholar 

  • Markos S, Richard LM, Baxter D (2016) A powerful resource for plant conservation efforts: the consortium of California herbaria reaches two million specimens. Fremontia 44(1):16–19

    Google Scholar 

  • Matthews GVT (1993) The Ramsar Convention on Wetlands: its history and development. Ramsar Convention Bureau, Gland

    Google Scholar 

  • McGregor RL (1968) The taxonomy of the genus Echinacea (Compositae). Univ Kansas Sci Bull 68:113–142

    Google Scholar 

  • MEA (Millennium Ecosystem Assessment) (2005) Ecosystem and human well-being. Synthesis. Island Press, Washington D.C., p p137

    Google Scholar 

  • Miller-Rushing AJ, Primack RB, Primack D et al (2006) Photographs and herbarium specimens as tools to document phonological changes in response to global warming. Am J Bot 93:1667–1674

    Article  PubMed  Google Scholar 

  • Mooney HA, Winner WE, Pell EJ (1991) Response of plants to multiple stresses. Academic Press, San Diego

    Google Scholar 

  • Morghan KJR, Rice KJ (2005) Centaurea solstitialis invasion success is influenced by Nassella pulchra size. Restor Ecol 13:524–528

    Article  Google Scholar 

  • Myers N (1998) Threatened biotas: ‘‘hot spots” in tropical forests. Environmentalist 8:187–208

    Article  Google Scholar 

  • Nagel JM, Griffin KL (2001) Construction cost and invasive potential: comparing Lythrum salicaria (Lythraceae) with co-occurring native species along pond banks. Am J Bot 88:2252–2258

    Article  CAS  PubMed  Google Scholar 

  • Newton AC, Oldfield S (2008) Red Listing the world’s tree species: a review of recent progress. Endanger Species Res 6:137–147

    Article  Google Scholar 

  • Nilsson SG, Nilsson IN (1983) Are estimated species turnover rates on islands largely sampling errors? Am Nat 121:595–597

    Article  Google Scholar 

  • Norton DA (2009) Species invasions and the limits to restoration: learning from the New Zealand experience. Science 325:569–571

    Article  CAS  PubMed  Google Scholar 

  • Oakley CG, Winn AA (2012) Effects of population size and isolation on heterosis, mean fitness, and inbreeding depression in a perennial plant. New Phytol 196(1):261–280

    Article  PubMed  Google Scholar 

  • Panchen ZA, Primack RB, Ko TA et al (2012) Herbarium specimens, photographs, and field observations show Philadelphia area plants are responding to climate change. Am J Bot 99:751–756

    Article  PubMed  Google Scholar 

  • Pandit MK, Navjot SS, Koh LP et al (2007) Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodivers Conserv 16(1):153–163

    Article  Google Scholar 

  • Parkhurst DF (1978) The adaptive significance of stomatal occurrence on one or both surfaces of leaves. J Ecol 66:367–383

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Syst 37:637–639

    Article  Google Scholar 

  • Patiño J et al (2013) Baker’s law and the island syndromes in bryophytes. J Ecol 101:1245–1255

    Article  Google Scholar 

  • Peirson JA (2010) Biogeography, ecology, and evolution of the endemic vascular flora of the glaciated Great Lakes Region: a case study of the Solidago Simplex Species Complex. Ph.D. Dissertation, University of Michigan

    Google Scholar 

  • Peñuelas J, Filella I (2001) Herbaria century record of increasing eutrophication in Spanish terrestrial ecosystems. Glob Change Biol 7:427–433

    Article  Google Scholar 

  • Primack D, Imbres C, Primack RB et al (2004) Herbarium specimens demonstrate earlier flowering times in response to warming in Boston. Am J Bot 91:1260–1264

    Article  PubMed  Google Scholar 

  • Pyšek P (1991) Heracleum mantegazzianum in the Czech Republic: dynamics of spreading from the historical perspective. Folia Geobot Phytotaxon 26:439–454

    Article  Google Scholar 

  • Rabinowitz D (1981) Seven forms of rarity. In: Synge H (ed) Biological aspects of rare plant conservation. Wiley, New York, pp 205–218

    Google Scholar 

  • Rathcke BJ, Jules ES (1993) Habitat fragmentation and plant–pollinator interactions. Curr Sci 65:273–277

    Google Scholar 

  • Rich TCG, Woodruff ER (1992) Recording bias in botanical surveys. Watsonia 19:73–95

    Google Scholar 

  • Ristaino JB (1988) The importance of archival and herbarium materials in understanding the role of oospores in late blight epidemics of the past. Phytopathology 88:1120–1130

    Article  Google Scholar 

  • Robbirt KM, Davy AJ, Hutchings MJ et al (2011) Validation of biological collections as a source of phenological data for use in climate change studies: a case study with the orchid Ophrys sphegodes. J Ecol 99:235–241

    Article  Google Scholar 

  • Ross KA, Fox BJ, Fox MD (2002) Changes to plant species richness in forest fragments: fragment age, disturbance and fire history may be as important as area. J Biogeogr 29:749–765

    Article  Google Scholar 

  • Salick J, Ghimire KS, Fang Z et al (2014) Himalayan alpine vegetation, climate change and mitigation. J Ethnobiol 34(3):276–293

    Article  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci U S A 99:2445–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauve M-R (2004) Rhodiola (golden root) to the rescue for Inuit (English translation). In: University of Montreal Forum, September 18, vol 41, no. 4

    Google Scholar 

  • Schaal BA, Leverich WJ (1996) Molecular variation in isolated plant populations. Plant Species Biol 11:33–40

    Article  Google Scholar 

  • Schatz GE (2002) Taxonomy and herbaria in service of plant conservation: lessons from Madagascar’s endemic families. Ann Mo Bot Gard 89:145–152

    Article  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Shih JG, Finkelstein SA (2008) Range dynamics and invasive tendencies in Typha latifolia and Typha angustifolia in eastern North America derived from herbarium and pollen records. Wetlands 28:1–16

    Article  Google Scholar 

  • Singh A, Shi H, Foresman T et al (2001) Status of the world’s remaining closed forests: an assessment using satellite data and policy options. Ambio 30:67–69

    Article  CAS  Google Scholar 

  • Sodhi NS, Brook BW, Bradshaw CJA (2009) Causes and consequences of species extinctions. In: Levin SA (ed) The Princeton guide to ecology. Princeton University Press, Princeton, pp 514–520

    Google Scholar 

  • Sonne J, Ana M, Gonzales M et al (2016) High proportion of smaller ranged hummingbird species coincides with ecological specialization across the Americas. In: Proceedings of Royal Society B, p 283

    Google Scholar 

  • Spira TP (2001) Plant–pollinator interactions: a threatened mutualism with implications for the ecology and management of rare plants. Nat Areas J 21:78–88

    Google Scholar 

  • Stace CA (1989) Plant taxonomy and biosystematics (2nd edn). Cambridge University Press, Cambridge, pp 74–75

    Google Scholar 

  • Stebbins GL, Major J (1965) Endemism and speciation in the California flora. Ecol Monogr 35:1–35

    Article  Google Scholar 

  • Stuckey RL (1980) Distributional history of Lythrum salicaria (purple loosestrife) in North America. Bartonia 47:3–20

    Google Scholar 

  • Susan L (2009) Tired? Stressed? Have some Rhodiola rosea. Renewal Now; Winter: 3. http://arrgo.ca/article/tired-stressed-have-some-rhodiola-rosea

  • Teece MA, Fogel ML, Tuross N et al (2002) The Lewis and Clark Herbarium of the Academy of Natural Sciences, Part 3. Modern environmental applications of a historic nineteenth century botanical collection. Notulae Nat 477:1–16

    Google Scholar 

  • Ter Steege H, Jansen-Jacobs MJ, Datadin VK (2000) Can botanical collections assist in a National Protected Area Strategy in Guyana? Biodivers Conserv 9:215–240

    Article  Google Scholar 

  • Thompson I, Mackey B, McNulty S et al (2009) Forest resilience, biodiversity, and climate change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series no. 43, p. 67

    Google Scholar 

  • Ungricht S, Rasplus J-Y, Kjellberg F (2005) Extinction threat evaluation of endemic fig trees of New Caledonia: priority assessment for taxonomy and conservation with herbarium collections. Biodivers Conserv 14:205–232

    Article  Google Scholar 

  • Vaasa A, Rosenberg V (2004) Preservation of the rare terrestrial orchids in vitro. Acta Univ Latviensis 676:243–676

    Google Scholar 

  • Vincent MA (2005) On the spread and current distribution of Pyrus calleryana in the United States. Castanea 70:20–31

    Article  Google Scholar 

  • Walter KS, Gillet HJ (eds) (1998) 1997 IUCN Red List of Threatened Plants. World Conservation Monitoring Center. IUCN-The World Conservation Union, Gland

    Google Scholar 

  • Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends Ecol Evol 22:634–642

    Article  PubMed  Google Scholar 

  • Warburton CL et al (2000) Clonality and sexual reproductive failure in remnant populations of Santalum lanceolatum (Santalaceae). Biol Conserv 96:45–54

    Article  Google Scholar 

  • Weber E (1998) The dynamics of plant invasions: a case study of three exotic goldenrod species (Solidago L.) in Europe. J Biogeogr 25:147–154

    Article  Google Scholar 

  • Weekley CW, Race T (2001) The breeding system of Ziziphus celata Judd and D.W. Hall (Rhamnaceae), a rare endemic plant of the Lake Wales Ridge, Florida, USA: implications for recovery. Biol Conserv 100:207–213

    Article  Google Scholar 

  • Whittaker RJ, Fernández-Palacios JM (2007) Island Biogeography. Ecology, evolution and conservation (2nd edn). Oxford University Press

    Google Scholar 

  • WHO (2002) WHO traditional medicine strategy 2002–2005

    Google Scholar 

  • Wilcock CC (2002) Maintenance and recovery of rare clonal plants: the case of the twinflower (Linnaea borealis L.). Bot J Scotl 54:121–131

    Article  Google Scholar 

  • Wilcock CC, Neiland MRM (1998) Reproductive characters as priority indicators for rare plant conservation. In: Synge H, Akeroyd J (eds) Planta Europa: Proceedings of the second European conference on the conservation of wild plants, pp 221–230

    Google Scholar 

  • Willis F, Moat J, Paton A (2003) Defining a role for herbarium data in Red List assessments: a case study of Plectranthus from eastern and southern tropical Africa. Biodivers Conserv 12:1537–1552

    Article  Google Scholar 

  • Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327:617–618

    Article  Google Scholar 

  • Yadab BR (2008) Managing biodiversity in protected areas of Nepal, pp 91–92

    Google Scholar 

  • Zuntini AR, Fonseca LHM, Lohmann LG (2013) Primers for phylogeny reconstruction in Bignonieae (Bignoniaceae) using herbarium samples. Appl Plant Sci 1(11):1300018. doi:10.3732/apps.1300076

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwana Khanum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khanum, R. (2017). Rarity of Endemic Medicinal Plants and Role of Herbaria for Their Conservation Against Environmental Challenges. In: Ghorbanpour, M., Varma, A. (eds) Medicinal Plants and Environmental Challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-68717-9_3

Download citation

Publish with us

Policies and ethics