Skip to main content

Characterization of f Waves

  • Chapter
  • First Online:
Book cover Atrial Fibrillation from an Engineering Perspective

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

This chapter reviews different approaches to f wave characterization. The two fundamental characteristics f wave amplitude and atrial fibrillatory rate are first considered, followed by a description of linear and nonlinear techniques for characterizing wave morphology and regularity. The analysis of spatial ECG information, manifested as a vectorcardiographic loop or a body surface potential map, is reviewed. The chapter concludes with a brief overview of popular clinical applications where the described approaches have been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For notational convenience, the extracted f wave signal is denoted x(n) in this chapter, replacing the notation \(\hat{d}(n)\) used in Chap. 5.

  2. 2.

    It may be noted that this procedure is closely related to the “sifting” procedure, which is part of empirical mode decomposition [33], where the lower and upper envelopes of the local extrema are used to compute the intrinsic mode functions.

  3. 3.

    Since the amplitude spectrum is analyzed in some studies, obtained as the square root of the power spectrum, caution should be exercised when comparing amplitude-related results.

  4. 4.

    When the data matrix \(\mathbf {X}\) is composed of overlapping segments, defined by a sliding window shifted with one sample at a time, \(R_K\) is known as the fractional spectral radius and used to quantify the stochastic complexity of a signal [57], see also [78].

  5. 5.

    The orthogonal leads X, Y, and Z can be synthesized from the 12-lead ECG using, for example, the inverse Dower matrix [126, 127], see also page 64.

  6. 6.

    Principal component analysis of 180-lead isopotential maps, recorded in sinus rhythm, was pursued already in 1964, but then motivated by the completely different question “What is the minimum number of leads which can contain all of the electrocardiographic information available on the body surface?” [151], see also [152]. In those studies, the data matrix was defined by one single isopotential map, while \(\mathbf {X}\) in (6.86) contains N maps. Thus, the former approach is purely spatial, while the approach in [80] may be labelled “spatiotemporal”.

  7. 7.

    It is somewhat remarkable that outcome prediction was based on manual f wave amplitude measurements in recent studies [4, 5], although algorithms for amplitude measurements have been available for many years.

References

  1. A. Bollmann, D. Husser, L.T. Mainardi, F. Lombardi, P. Langley, A. Murray, J.J. Rieta, J. Millet, S.B. Olsson, M. Stridh, L. Sörnmo, Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications. Europace 8, 911–926 (2006)

    Article  Google Scholar 

  2. T.A.R. Lankveld, S. Zeemering, H.J.G.M. Crijns, U. Schotten, The ECG as a tool to determine atrial fibrillation complexity. Heart 100, 1077–1084 (2014)

    Article  Google Scholar 

  3. P.G. Platonov, V.D.A. Corino, M. Seifert, F. Holmqvist, L. Sörnmo, Atrial fibrillatory rate in the clinical context: natural course and prediction of intervention outcome. Europace 16, iv110–iv119 (2014)

    Article  Google Scholar 

  4. Z. Cheng, H. Deng, K. Cheng, T. Chen, P. Gao, M. Yu, Q. Fang, The amplitude of fibrillatory waves on leads aVF and V1 predicting the recurrence of persistent atrial fibrillation patients who underwent catheter ablation. Ann. Noninvasive Electrocardiol. 18, 352–358 (2013)

    Article  Google Scholar 

  5. I. Nault, N. Lellouche, S. Matsuo, S. Knecht, M. Wright, K.T. Lim, F. Sacher, P. Platonov, A. Deplagne, P. Bordachar, N. Derval, M.D. O’Neill, G.J. Klein, M. Hocini, P. Jaïs, J. Clémenty, M. Haïssaguerre, Clinical value of fibrillatory wave amplitude on surface ECG in patients with persistent atrial fibrillation. J. Interv. Card. Electrophysiol. 26, 11–19 (2009)

    Article  Google Scholar 

  6. A. Bollmann, A. Tveit, D. Husser, M. Stridh, L. Sörnmo, P. Smith, S.B. Olsson, Fibrillatory rate response to candesartan in persistent atrial fibrillation. Europace 10, 1138–1144 (2008)

    Article  Google Scholar 

  7. A. Bollmann, D. Husser, R. Steinert, M. Stridh, L. Sörnmo, S.B. Olsson, D. Polywka, J. Molling, C. Geller, H.U. Klein, Echo- and electrocardiographic predictors for atrial fibrillation recurrence following cardioversion. J. Cardiovasc. Electrophysiol. 14, 162–165 (2003)

    Article  Google Scholar 

  8. D. Husser, M. Stridh, L. Sörnmo, P. Platanov, S.B. Olsson, A. Bollmann, Analysis of the surface electrocardiogram for monitoring and predicting antiarrhythmic drug effects in atrial fibrillation. Cardiovasc. Drugs Therapy 18, 377–386 (2004)

    Article  Google Scholar 

  9. M. Aunes-Jansson, N. Edvardsson, M. Stridh, L. Sörnmo, L. Frison, A. Berggren, Decrease of the atrial fibrillatory rate, increased organization of the atrial rhythm and termination of atrial fibrillation by AZD7009. J. Electrocardiol. 46, 29–35 (2013)

    Article  Google Scholar 

  10. S. Nattel, Atrial electrophysiological remodeling caused by rapid atrial activation: underlying mechanisms and clinical relevance to atrial fibrillation. Cardiovasc. Res. 42, 298–308 (1999)

    Article  Google Scholar 

  11. S. Petrutiu, A. Sahakian, S. Swiryn, Time domain analysis of atrial fibrillation, in Understanding Atrial Fibrillation: The Signal Processing Contribution ed. by L.T. Mainardi, L. Sörnmo, S. Cerutti (Morgan & Claypool, San Francisco, 2008), pp. 33–51 (Chap. 2)

    Google Scholar 

  12. R. Alcaraz, J.J. Rieta, A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms. Biomed. Signal Process. Control 5, 1–14 (2010)

    Article  Google Scholar 

  13. R. Alcaraz, J.J. Rieta, Applications of nonlinear methods to atrial fibrillation, in Complexity and Nonlinearity in Cardiovascular Signals, ed. by R. Barbieri, E.P. Scilingo, G. Valenza (Springer, 2017), pp. 387–426

    Chapter  Google Scholar 

  14. M. Rodrigo, M. de la Salud Guillem, A.M. Climent, J. Pedrón-Torrecilla, A. Liberos, J. Millet, F. Fernández-Avilés, F. Atienza, O. Berenfeld, Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: a clinical-computational study. Heart Rhythm 9, 1584–1591 (2014)

    Article  Google Scholar 

  15. V. Jacquemet, A. van Oosterom, J.-M. Vesin, L. Kappenberger, Analysis of electrocardiograms during atrial fibrillation: a biophysical approach. IEEE Med. Biol. Eng. Mag. 25, 79–88 (2006)

    Article  Google Scholar 

  16. V. Jacquemet, A. van Oosterom, Modeling atrial fibrillation: From myocardial cells to ECG, in Understanding Atrial Fibrillation: The Signal Processing Contribution, ed. by L.T. Mainardi, L. Sörnmo, S. Cerutti (Morgan & Claypool, San Francisco, 2008) Chap. 7, pp. 151–173

    Google Scholar 

  17. O.V. Aslanidi, M.A. Colman, J. Stott, H. Dobrzynski, M.R. Boyett, A.V. Holden, H. Zhang, 3D virtual human atria: a computational platform for studying clinical atrial fibrillation. Prog. Biophys. Mol. Biol. 107, 156–168 (2011)

    Article  Google Scholar 

  18. M. Meo, V. Zarzoso, O. Meste, D.G. Latcu, N. Saoudi, Catheter ablation outcome prediction in persistent atrial fibrillation using weighted principal component analysis. Biomed. Signal Process. Control 8, 958–968 (2013)

    Article  Google Scholar 

  19. L.Y. Di Marco, D. Raine, J.P. Bourke, P. Langley, Recurring patterns of atrial fibrillation in surface ECG predict restoration of sinus rhythm by catheter ablation. Comput. Biol. Med. 54, 172–179 (2014)

    Article  Google Scholar 

  20. R. Dubois, A.J. Shah, M. Hocini, A. Denis, N. Derval, H. Cochet, F. Sacher, L. Bear, J. Duchateau, P. Jaïs, M. Haïssaguerre, Non-invasive cardiac mapping in clinical practice: application to the ablation of cardiac arrhythmias. J. Electrocardiol. 48, 966–974 (2015)

    Article  Google Scholar 

  21. A. Shah, M. Hocini, M. Haïssaguerre, P. Jaïs, Non-invasive mapping of cardiac arrhythmias. Curr. Cardiol. Rep. 17, 1–11 (2015)

    Article  Google Scholar 

  22. M. Thurmann, J. Janney, The diagnostic importance of fibrillatory wave size. Circulation 25, 991–994 (1962)

    Article  Google Scholar 

  23. M.R. Culler, J.A. Boone, P.C. Gazes, Fibrillatory wave size as a clue to etiological diagnosis. Am. Heart J. 66, 435–436 (1963)

    Article  Google Scholar 

  24. H. Åberg, Atrial fibrillation II. A study of fibrillatory wave size on the regular scalar electrocardiogram. Acta Med. Scand. 185, 381–385 (1969)

    Article  Google Scholar 

  25. M.H. Aysha, A.S. Hassan, Diagnostic importance of fibrillatory wave amplitude: a clue to echocardiographic left atrial size and etiology of atrial fibrillation. J. Electrocardiol. 21, 247–251 (1988)

    Article  Google Scholar 

  26. J.L. Blackshear, R.E. Safford, L.A. Pearce on behalf of the stroke prevention in atrial fibrillation investigators, F-amplitude, left atrial appendage velocity, and thromboembolic risk in nonrheumatic atrial fibrillation. Clin. Cardiol. 19, 309–313 (1996)

    Article  Google Scholar 

  27. Q. Xi, A.V. Sahakian, J. Ng, S. Swiryn, Atrial fibrillatory wave characteristics on surface electrogram: ECG to ECG repeatability over twenty-four hours in clinically stable patients. J. Cardiovasc. Electrophysiol. 15, 911–917 (2004)

    Article  Google Scholar 

  28. Q. Xi, A.V. Sahakian, T.G. Frohlich, J. Ng, S. Swiryn, Relationship between pattern of occurrence of atrial fibrillation and surface electrocardiographic fibrillatory wave characteristics. Heart Rhythm 1, 656–663 (2004)

    Article  Google Scholar 

  29. R. Alcaraz, F. Hornero, J.J. Rieta, Noninvasive time and frequency predictors of long-standing atrial fibrillation early recurrence after electrical cardioversion. Pacing Clin. Electrophysiol. 34, 1241–1250 (2011)

    Article  Google Scholar 

  30. L. Sörnmo, P. Laguna, Bioelectrical Signal Processing in Cardiac and Neurological Applications (Elsevier (Academic Press), Amsterdam, 2005)

    Google Scholar 

  31. M. Meo, V. Zarzoso, O. Meste, D.G. Latcu, N. Saoudi, Spatial variability of the 12-lead surface ECG as a tool for noninvasive prediction of catheter ablation outcome in persistent atrial fibrillation. IEEE Trans. Biomed. Eng. 60, 20–27 (2013)

    Article  Google Scholar 

  32. V. Zarzoso, D.G. Latcub, A.R. Hidalgo-Muñoz, M. Meo, O. Meste, I. Popescu, N. Saoudi, Non-invasive prediction of catheter ablation outcome in persistent atrial fibrillation by fibrillatory wave amplitude computation in multiple electrocardiogram leads. Arch. Cardiovasc. Dis. 109, 679–688 (2016)

    Article  Google Scholar 

  33. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shi, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. D.W. Botteron, J.M. Smith, A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart. IEEE Trans. Biomed. Eng. 42, 579–586 (1995)

    Article  Google Scholar 

  35. M. Holm, R. Johansson, S.B. Olsson, J. Brandt, C. Lührs, A new method for analysis of atrial activation during chronic atrial fibrillation in man. IEEE Trans. Biomed. Eng. 43, 198–210 (1996)

    Article  Google Scholar 

  36. L. Faes, G. Nollo, R. Antolini, F. Gaita, F. Ravelli, A method for quantifying atrial fibrillation organization based on wave morphology similarity. IEEE Trans. Biomed. Eng. 49, 1504–1513 (2002)

    Article  Google Scholar 

  37. R.P.M. Houben, N.M.S. de Groot, M.A. Allessie, Analysis of fractionated atrial fibrillation electrograms by wavelet decomposition. IEEE Trans. Biomed. Eng. 57, 1388–1398 (2010)

    Article  Google Scholar 

  38. J. Ng, V. Sehgal, J.K. Ng, D. Gordon, J.J. Goldberger, Iterative method to detect atrial activations and measure cycle length from electrograms during atrial fibrillation. IEEE Trans. Biomed. Eng. 61, 273–278 (2014)

    Article  Google Scholar 

  39. M. El Haddad, R.P.M. Houben, R. Stroobandt, F. Van Heuverswyn, R. Tavernier, M. Duytschaever, Novel algorithmic methods in mapping of atrial and ventricular tachycardia. Circ. Arrhythm. Electrophysiol. 7, 463–472 (2014)

    Article  Google Scholar 

  40. C.D. Cantwell, C.H. Roney, F.S. Ng, J.H. Siggers, S.J. Sherwin, N.S. Peters, Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping. Comput. Biol. Med. 65, 229–242 (2015)

    Article  Google Scholar 

  41. K.M. Ropella, A.V. Sahakian, J.M. Baerman, S. Swiryn, Effects of procainamide on intra-atrial electrograms during atrial fibrillation: implications for detection algorithms. Circulation 77, 1047–1054 (1988)

    Article  Google Scholar 

  42. S. Lazar, S. Dixit, F.E. Marchlinski, D.J. Callans, E.P. Gerstenfeld, Presence of left-to-right atrial frequency gradient in paroxysmal but not persistent atrial fibrillation in humans. Circulation 110, 3181–3186 (2004)

    Article  Google Scholar 

  43. Y.J. Lin, C.T. Tai, T. Kao, H.W. Tso, S. Higa, H.M. Tsao, S.L. Chang, M.H. Hsieh, S.A. Chen, Frequency analysis in different types of paroxysmal atrial fibrillation. J. Am. Coll. Cardiol. 47, 1401–1407 (2006)

    Article  Google Scholar 

  44. M. Hayes, Statistical Digital Signal Processing and Modeling (Wiley, New York, 1996)

    Google Scholar 

  45. R. Sassi, L.T. Mainardi, P. Maison-Blanche, S. Cerruti, Estimation of spectral parameters of residual ECG signals during atrial fibrillation using autoregressive models. Folia Cardiologica 12, 108–110 (2005)

    Google Scholar 

  46. R. Sassi, V.D.A. Corino, L.T. Mainardi, Analysis of surface atrial signals: time series with missing data? Ann. Biomed. Eng. 37, 2082–2092 (2009)

    Article  Google Scholar 

  47. S.M. Kay, Fundamentals of Statistical Signal Processing. Estimation Theory (Prentice-Hall, New Jersey, 1993)

    Google Scholar 

  48. N.R. Lomb, Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976)

    Article  Google Scholar 

  49. D.S. Stoffer, D.E. Tyler, D.A. Wendt, The spectral envelope and its applications. Stat. Sci. 15, 224–253 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  50. L. Uldry, J. Van Zaen, Y. Prudat, L. Kappenberger, J.-M. Vesin, Measures of spatiotemporal organization differentiate persistent from long-standing atrial fibrillation. Europace 14, 1125–1131 (2012)

    Article  Google Scholar 

  51. S. Zeemering, T.A.R. Lankveld, P. Bonizzi, I. Limantoro, S.C.A.M. Bekkers, H.J.G.M. Crijns, U. Schotten, The electrocardiogram as a predictor of successful pharmacological cardioversion and progression of atrial fibrillation. Europace, eux234 (2017)

    Google Scholar 

  52. T.H. Everett, L.-C. Kok, R.H. Vaughn, J.R. Moorman, D.E. Haines, Frequency domain algorithm for quantifying atrial fbrillation organization to increase defibrillation efficiency. IEEE Trans. Biomed. Eng. 48, 969–978 (2001)

    Article  Google Scholar 

  53. T.H. Everett, J.R. Moorman, L.-C. Kok, J.G. Akar, D.E. Haines, Assessment of global atrial fibrillation organization to optimize timing of atrial defibrillation. Circulation 103, 2857–2861 (2001)

    Article  Google Scholar 

  54. A. Buttu, E. Pruvot, J. Van Zaen, A. Viso, A. Forclaz, P. Pascale, S.M. Narayan, J. Vesin, Adaptive frequency tracking of the baseline ECG identifies the site of atrial fibrillation termination by catheter ablation. Biomed. Signal Process. Control 8, 969–980 (2013)

    Article  Google Scholar 

  55. M. Stridh, L. Sörnmo, C.J. Meurling, S.B. Olsson, Sequential characterization of atrial tachyarrhythmias based on ECG time–frequency analysis. IEEE Trans. Biomed. Eng. 51, 100–114 (2004)

    Article  Google Scholar 

  56. R. Alcaraz, F. Hornero, J.J. Rieta, Electrocardiographic spectral features for long-term outcome prognosis of atrial fibrillation catheter ablation. Ann. Biomed. Eng. 44, 3307–3318 (2016)

    Article  Google Scholar 

  57. I.A. Rezek, S.J. Roberts, Stochastic complexity measures for physiological signal analysis. IEEE Trans. Biomed. Eng. 45, 1186–1191 (1998)

    Article  Google Scholar 

  58. S. Pehrson, M. Holm, C. Meurling, M. Ingemansson, B. Smideberg, L. Sörnmo, S.B. Olsson, Non-invasive assessment of magnitude and dispersion of atrial cycle length during chronic atrial fibrillation in man. Eur. Heart J. 19, 1836–1844 (1998)

    Article  Google Scholar 

  59. F. Chiarugi, M. Varanini, F. Cantini, F. Conforti, G. Vrouchos, Noninvasive ECG as a tool for predicting termination of paroxysmal atrial fibrillation. IEEE Trans. Biomed. Eng. 54, 1399–1406 (2007)

    Article  Google Scholar 

  60. M. Stridh, L. Sörnmo, C.J. Meurling, S.B. Olsson, Characterization of atrial fibrillation using the surface ECG: time-dependent spectral properties. IEEE Trans. Biomed. Eng. 48, 19–27 (2001)

    Article  Google Scholar 

  61. C. Vayá, J.J. Rieta, Time and frequency series combination for non-invasive regularity analysis of atrial fibrillation. Med. Biol. Eng. Comput. 47, 687–696 (2009)

    Article  Google Scholar 

  62. S. Qian, D. Chen, Joint Time–Frequency Analysis Methods and Applications (Prentice-Hall, New Jersey, 1996)

    Google Scholar 

  63. L. Cohen, Time–Frequency Analysis (Prentice-Hall, New Jersey, 1995)

    Google Scholar 

  64. B. Boashash, Estimating and interpreting the instantaneous frequency of a signal–Part 2: algorithms and applications. Proc. IEEE 80, 540–568 (1992)

    Article  Google Scholar 

  65. M. Stridh, L. Sörnmo, C.J. Meurling, S.B. Olsson, Detection of autonomic modulation in permanent atrial fibrillation. Med. Biol. Eng. Comput. 41, 625–629 (2003)

    Article  Google Scholar 

  66. M. Malik, Standard measurements of heart rate variability, in Dynamic Electrocardiography, ed. by M. Malik, A.J. Camm (Wiley, New York, 2004), pp. 13–21 (Chap. 2)

    Google Scholar 

  67. B. Widrow, S.D. Stearns, Adaptive Signal Proccessing (Prentice-Hall, New Jersey, 1985)

    MATH  Google Scholar 

  68. S. Haykin, Adaptive Filter Theory, 5th edn. (Pearson, New Jersey, 2014)

    Google Scholar 

  69. J. Van Zaen, L. Uldry, C. Duchêne, Y. Prudat, R.A. Meuli, M.M. Murray, J.-M. Vesin, Adaptive tracking of EEG oscillations. J. Neurosci. Meth. 186, 97–106 (2010)

    Article  Google Scholar 

  70. R. Alcaraz, J.J. Rieta, Sample entropy of the main atrial wave predicts spontaneous termination of paroxysmal atrial fibrillation. Med. Eng. Phys. 31, 917–922 (2009)

    Article  Google Scholar 

  71. M. Stridh, D. Husser, A. Bollmann, L. Sörnmo, Waveform characterization of atrial fibrillation using phase information. IEEE Trans. Biomed. Eng. 56, 1081–1089 (2009)

    Article  MATH  Google Scholar 

  72. A.V. Oppenheim, R.W. Schafer, J.R. Buck, Discrete-Time Signal Processing, 2nd edn. (Prentice-Hall, New Jersey, 1999)

    Google Scholar 

  73. B. Picinbono, On instantaneous amplitude and phase of signals. IEEE Trans. Signal Process. 45, 552–560 (1997)

    Article  Google Scholar 

  74. M. Chavez, M. Besserve, C. Adam, J. Martinerie, Towards a proper estimation of phase synchronization from time series. J. Neurosci. Meth. 154, 149–160 (2006)

    Article  Google Scholar 

  75. L. Faes, G. Nollo, M. Kirchner, E. Olivetti, F. Gaita, R. Riccardi, R. Antolini, Principal component analysis and cluster analysis for measuring the local organisation of human atrial fibrillation. Med. Biol. Eng. Comput. 39, 656–663 (2001)

    Article  Google Scholar 

  76. S.G. Priori, D.W. Mortara, C. Napolitano, L. Diehl, V. Paganini, F. Cantù, G. Cantù, P.J. Schwartz, Evaluation of the spatial aspects of T-wave complexity in the long-QT syndrome. Circulation 96, 3006–3012 (1997)

    Article  Google Scholar 

  77. R. Goya-Esteban, F. Sandberg, Ó. Barquero-Pérez, A. García Alberola, L. Sörnmo, J.L. Rojo-Álvarez, Long-term characterization of persistent atrial fibrillation: wave morphology, frequency, and irregularity analysis. Med. Biol. Eng. Comput. 52, 1053–1060 (2014)

    Article  Google Scholar 

  78. F. Nilsson, M. Stridh, A. Bollmann, L. Sörnmo, Predicting spontaneous termination of atrial fibrillation using the surface ECG. Med. Eng. Phys. 26, 802–808 (2006)

    Article  Google Scholar 

  79. J. Behar, J. Oster, Q. Li, G.D. Clifford, ECG signal quality during arrhythmia and its application to false alarm reduction. IEEE Trans. Biomed. Eng. 60, 1660–1666 (2013)

    Article  Google Scholar 

  80. P. Bonizzi, M. de la Salud Guillem, A.M. Climent, J. Millet, V. Zarzoso, F. Castells, O. Meste, Noninvasive assessment of the complexity and stationarity of the atrial wavefront patterns during atrial fibrillation. IEEE Trans. Biomed. Eng. 57, 2147–2157 (2010)

    Article  Google Scholar 

  81. M.E. Nygårds, J. Hulting, An automated system for ECG monitoring. Comput. Biomed. Res. 12, 181–202 (1979)

    Article  Google Scholar 

  82. P. Bonizzi, S. Zeemering, J.M.H. Karel, L.Y. Di Marco, L. Uldry, J. Van Zaen, J.-M. Vesin, U. Schotten, Systematic comparison of non-invasive measures for the assessment of atrial fibrillation complexity: a step forward towards standardization of atrial fibrillation electrogram analysis. Europace 17, 318–325 (2015)

    Article  Google Scholar 

  83. M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, L. Sörnmo, Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47, 838–848 (2000)

    Article  Google Scholar 

  84. Z. Syed, J. Guttag, C. Stultz, Clustering and symbolic analysis of cardiovascular signals: Discovery and visualization of medically relevant patterns in long-term data using limited prior knowledge. J. Adv. Signal Process., 1–16 (2007)

    Google Scholar 

  85. J.H. Abawajy, A.V. Kelarev, M. Chowdhury, Multistage approach for clustering and classification of ECG data. Comput. Meth. Prog. Biomed. 112, 720–730 (2013)

    Article  Google Scholar 

  86. R. Alcaraz, F. Hornero, A. Martínez, J.J. Rieta, Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation. Physiol. Meas. 33, 969–984 (2012)

    Article  Google Scholar 

  87. P. Sun, Q.H. Wu, A.M. Weindling, A. Finkelstein, K. Ibrahim, An improved morphological approach to background normalization of ECG signals. IEEE Trans. Biomed. Eng. 50, 117–121 (2003)

    Article  Google Scholar 

  88. Y. Sun, K. Chan, S. Krishnan, Characteristic wave detection in ECG signal using morphological transform. BMC Cardiovasc. Disord. 5, 28 (2005)

    Article  Google Scholar 

  89. F. Zhang, L. Yong, QRS detection based on multiscale mathematical morphology for wearable ECG devices in body area networks. IEEE Trans. Biomed. Circuits Syst. 3, 220–228 (2009)

    Article  Google Scholar 

  90. J. Lian, G. Garner, D. Muessig, V. Lang, A simple method to quantify the morphological similarity between signals. Signal Process. 90, 684–688 (2010)

    Article  MATH  Google Scholar 

  91. W. Chen, J. Zhuang, W. Yu, Z. Wang, Measuring complexity using FuzzyEn, ApEn, and SampEn. Med. Eng. Phys. 31, 61–68 (2009)

    Article  Google Scholar 

  92. M. Julián, R. Alcaraz, J.J. Rieta, Comparative assessment of nonlinear metrics to quantify organization-related events in surface electrocardiograms of atrial fibrillation. Comput. Biol. Med. 48, 66–76 (2014)

    Article  Google Scholar 

  93. F. Ravelli, M. Masè, Computational mapping in atrial fibrillation: how the integration of signal-derived maps may guide the localization of critical sources. Europace 16, 714–723 (2014)

    Article  Google Scholar 

  94. Z. Liang, Y. Wang, X. Sun, D. Li, L.J. Voss, J.W. Sleigh, S. Hagihira, X. Li, EEG entropy measures in anesthesia. Front. Comput. Neurosci. 9, 16 (2015)

    Article  Google Scholar 

  95. W. Xiong, L. Faes, P.C. Ivanov, Entropy measures, entropy estimators, and their performance in quantifying complex dynamics: effects of artifacts, nonstationarity, and long-range correlations. Phys. Rev. E 95, 062114 (2017)

    Article  Google Scholar 

  96. C.E. Shannon, A mathematical theory of communication. Bell Sys. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  97. S.M. Pincus, Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 88, 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  98. S.J. Richman, J.R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. 278, H2039–H2049 (2000)

    Google Scholar 

  99. T. Inouye, K. Shinosaki, H. Sakamoto, S. Toi, S. Ukai, A. Iyama, Y. Katsuda, M. Hirano, Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephal. Clin. Neurophysiol. 79, 204–210 (1991)

    Article  Google Scholar 

  100. O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J. Neurosci. Meth. 105, 65–75 (2001)

    Article  Google Scholar 

  101. A. Porta, G. Baselli, D. Liberati, N. Montano, C. Cogliati, T. Gnecchi-Ruscone, A. Malliani, S. Cerutti, Measuring regularity by means of a corrected conditional entropy in sympathetic outflow. Biol. Cybern. 78, 71–78 (1998)

    Article  MATH  Google Scholar 

  102. A. Molina-Picó, D. Cuesta-Frau, M. Aboy, C. Crespo, P. Miró-Martínez, S. Oltra-Crespo, Comparative study of approximate entropy and sample entropy robustness to spikes. Artif. Intell. Med. 53, 97–106 (2011)

    Article  Google Scholar 

  103. R. Alcaraz, J.J. Rieta, A non-invasive method to predict electrical cardioversion outcome of persistent atrial fibrillation. Med. Biol. Eng. Comput. 46, 625–635 (2008)

    Article  Google Scholar 

  104. R. Alcaraz, J.J. Rieta, Wavelet bidomain sample entropy analysis to predict spontaneous termination of atrial fibrillation. Physiol. Meas. 29, 65–80 (2008)

    Article  Google Scholar 

  105. R. Alcaraz, F. Sandberg, L. Sörnmo, J.J. Rieta, Classification of paroxysmal and persistent atrial fibrillation in ambulatory ECG recordings. IEEE Trans. Biomed. Eng. 58, 1441–1449 (2011)

    Article  Google Scholar 

  106. D.T. Kaplan, M.I. Furman, S.M. Pincus, S.M. Ryan, L.A. Lipsitz, A.L. Goldberger, Aging and the complexity of cardiovascular dynamics. Biophys. J. 59, 945–949 (1991)

    Article  Google Scholar 

  107. S.M. Pincus, D.L. Keefe, Quantification of hormone pulsatility via an approximate entropy algorithm. Am. J. Physiol. 262, E741–E754 (1992)

    Google Scholar 

  108. M.S. Pincus, A.L. Goldberger, Physiological time-series analysis: what does regularity quantify? Am. J. Physiol. (Heart Circ. Physiol.)266, H1643–H1656 (1994)

    Article  Google Scholar 

  109. S. Lu, X. Chen, J.K. Kanters, I.C. Solomon, K.H. Chon, Automatic selection of the threshold value \(r\) for approximate entropy. IEEE Trans. Biomed. Eng. 55, 1966–1972 (2008)

    Article  Google Scholar 

  110. R. Alcaraz, D. Abásolo, R. Hornero, J.J. Rieta, Optimal parameters study for sample entropy-based atrial fibrillation organization analysis. Comput. Meth. Progr. Biomed. 99, 124–132 (2010)

    Article  Google Scholar 

  111. F. Liao, Y.-K. Jan, Using modified sample entropy to characterize aging-associated microvascular dysfunction. Front. Physiol. 7, 126 (2016)

    Article  Google Scholar 

  112. X. Chen, I.C. Solomon, K.H. Chon, Comparison of the use of approximate entropy and sample entropy: applications to neural respiratory signal. in Proceedings of IEEE Conference on Engineering in Medicine and Biology (EMBS), vol. 27 (2005), pp. 4212–4215

    Google Scholar 

  113. J.M. Yentes, N. Hunt, K.K. Schmid, J.P. Kaipust, D. McGrath, N. Stergiou, The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 41, 349–365 (2013)

    Article  Google Scholar 

  114. G.D. Clifford, J. Behar, Q. Li, I. Rezek, Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiol Meas. 33, 1419–1433 (2012)

    Article  Google Scholar 

  115. F. Sandberg, M. Stridh, L. Sörnmo, Robust time–frequency analysis of atrial fibrillation using hidden Markov models. IEEE Trans. Biomed. Eng. 55, 502–511 (2008)

    Article  Google Scholar 

  116. M. Henriksson, A. Petrėnas, V. Marozas, F. Sandberg, L. Sörnmo, Model-based assessment of f-wave signal quality in patients with atrial fibrillation. IEEE Trans. Biomed. Eng. (2018) (accepted)

    Google Scholar 

  117. P. Stoica, H. Li, J. Li, Amplitude estimation of sinusoidal signals: survey, new results, and an application. IEEE Trans. Signal Process. 48, 338–352 (2000)

    Article  MATH  Google Scholar 

  118. V.D.A. Corino, L.T. Mainardi, M. Stridh, L. Sörmno, Improved time–frequency analysis of atrial fibrillation signals using spectral modelling. IEEE Trans. Biomed. Eng. 56, 2723–2730 (2008)

    Article  Google Scholar 

  119. M.S. Guillem, A.M. Climent, J. Millet, Á. Arenal, F. Fernández-Avilés, J. Jalife, F. Atienza, O. Berenfeld, Noninvasive localization of maximal frequency sites of atrial fibrillation by body surface potential mapping. Circ. Arrhythm. Electrophysiol. 6, 294–301 (2013)

    Article  Google Scholar 

  120. Y. Rudy, J.E. Burnes, Noninvasive electrocardiographic imaging. Ann. Noninvasive Electrocardiol. 4, 340–359 (1999)

    Article  Google Scholar 

  121. P.S. Cuculich, Y. Wang, B.D. Lindsay, M.N. Faddis, R. Schuessler, R.J. Damiano Jr., L. Li, Y. Rudy, Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation 122, 1364–1372 (2010)

    Article  Google Scholar 

  122. M. Haïssaguerre, M. Hocini, A. Denis, A.J. Shah, Y. Komatsu, S. Yamashita, M. Daly, S. Amraoui, S. Zellerhoff, M.Q. Picat, A. Quotb, L. Jesel, H. Lim, S. Ploux, P. Bordachar, G. Attuel, V. Meillet, P. Ritter, N. Derval, F. Sacher, O. Bernus, H. Cochet, P. Jaïs, R. Dubois, Driver domains in persistent atrial fibrillation. Circulation 130, 530–538 (2014)

    Article  Google Scholar 

  123. Y. Rudy, B.D. Lindsay, Electrocardiographic imaging of heart rhythm disorders: from bench to bedside. Card. Electrophysiol. Clin. 7, 17–35 (2015)

    Article  Google Scholar 

  124. Z. Zhou, Q. Jin, L.Y. Chen, L. Yu, L. Wu, B. He, Noninvasive imaging of high-frequency drivers and reconstruction of global dominant frequency maps in patients with paroxysmal and persistent atrial fibrillation. IEEE Trans. Biomed. Eng. 63, 1333–1340 (2016)

    Article  Google Scholar 

  125. J. Ng, A.V. Sahakian, W.G. Fisher, S. Swiryn, Atrial flutter loops derived from the surface ECG: does the plane of the loop correspond anatomically to the macroreentrant circuit? J. Electrocardiol. 36, S181–186 (2003)

    Article  Google Scholar 

  126. G.E. Dower, H.B. Machado, J.A. Osborne, On deriving the electrocardiogram from vectorcardiographic leads. Clin. Cardiol. 3, 87–95 (1980)

    Google Scholar 

  127. L. Edenbrandt, O. Pahlm, Vectorcardiogram synthesized from a 12-lead ECG: superiority of the inverse Dower matrix. J. Electrocardiol. 21, 361–367 (1988)

    Article  Google Scholar 

  128. J. Ng, A.V. Sahakian, W.G. Fisher, S. Swiryn, Surface ECG vector characteristics of organized and disorganized atrial activity during atrial fibrillation. J. Electrocardiol. 37, 91–97 (2004)

    Article  Google Scholar 

  129. S.R. Dibs, J. Ng, R. Arora, R.S. Passman, A.H. Kadish, J.J. Goldberger, Spatiotemporal characterization of atrial activation in persistent human atrial fibrillation: multisite electrogram analysis and surface electrocardiographic correlations–A pilot study. Heart Rhythm 5, 686–693 (2008)

    Article  Google Scholar 

  130. U. Richter, D. Husser, A. Bollmann, M. Stridh, L. Sörnmo, Spatial characteristics of atrial fibrillation electrocardiograms. J. Electrocardiol. 41, 165–172 (2008)

    Article  Google Scholar 

  131. S. Petrutiu, J. Ng, G.M. Nijm, H. Al-Angari, S. Swiryn, A.V. Sahakian, Atrial fibrillation and waveform characterization: a time domain perspective in the surface ECG. IEEE Eng. Med. Biol. Mag. 25, 24–30 (2006)

    Article  Google Scholar 

  132. F. Badilini, J. Fayn, P. Maison-Blanche, A. Leenhardt, M.C. Forlini, I. Denjoy, P. Coumel, P. Rubel, Quantitative aspects of ventricular repolarization: relationship between three-dimensional T wave loop morphology and scalar QT dispersion. Ann. Noninvasive Electrocardiol. 2, 146–157 (1997)

    Article  Google Scholar 

  133. T. Baykaner, R. Trikha, J.A.B. Zaman, D.E. Krummen, P.J. Wang, S.M. Narayan, Electrocardiographic spatial loops indicate organization of atrial fibrillation minutes before ablation-related transitions to atrial tachycardia. J. Electrocardiol. 50, 307–315 (2017)

    Article  Google Scholar 

  134. M.S. Guillem, A.M. Climent, F. Castells, D. Husser, J. Millet, A. Arya, C. Piorkowski, A. Bollmann, Noninvasive mapping of human atrial fibrillation. J. Cardiovasc. Electrophysiol. 20, 507–513 (2009)

    Article  Google Scholar 

  135. M. Mansour, R. Mandapati, O. Berenfeld, J. Chen, F. Samie, J. Jalife, Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart. Circulation 103, 2631–2636 (2001)

    Article  Google Scholar 

  136. J. Jalife, O. Berenfeld, M. Mansour, Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovasc. Res. 54, 204–216 (2002)

    Article  Google Scholar 

  137. J. Jalife, Rotors and spiral waves in atrial fibrillation. J. Cardiovasc. Electrophysiol. 14, 776–780 (2003)

    Article  Google Scholar 

  138. K.T. Konings, C.J. Kirchhof, J.R. Smeets, H.J. Wellens, O.C. Penn, M.A. Allessie, High-density mapping of electrically induced atrial fibrillation in humans. Circulation 89, 1665–1680 (1994)

    Article  Google Scholar 

  139. L.Y. Di Marco, J.P. Bourke, P. Langley, Spatial complexity and spectral distribution variability of atrial activity in surface ECG recordings of atrial fibrillation. Med. Biol. Eng. Comput. 50, 439–446 (2012)

    Article  Google Scholar 

  140. J.M. Rogers, P.V. Bayly, Quantitative analysis of complex rhythms, in Quantitative Cardiac Electrophysiology, ed. by D. Rosenbaum (CRC Press, New York, 2002), pp. 403–428 (Chap. 12)

    Chapter  Google Scholar 

  141. F. Atienza, J. Almendral, J. Jalife, S. Zlochiver, R. Ploutz-Snyder, E.G. Torrecilla, A. Arenal, J. Kalifa, F. Fernández-Avilés, O. Berenfeld, Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm 6, 33–40 (2009)

    Article  Google Scholar 

  142. K. Umapathy, K. Nair, S. Masse, S. Krishnan, J. Rogers, M.P. Nash, K. Nanthakumar, Phase mapping of cardiac fibrillation. Circ. Arrhythm. Electrophysiol. 3, 105–114 (2010)

    Article  Google Scholar 

  143. S.V. Pandit, J. Jalife, Rotors and the dynamics of cardiac fibrillation. Circ. Res. 112, 849–862 (2013)

    Article  Google Scholar 

  144. P. Kuklik, S. Zeemering, B. Maesen, J. Maessen, H.J. Crijns, S. Verheule, A.N. Ganesan, U. Schotten, Reconstruction of instantaneous phase of unipolar atrial contact electrogram using a concept of sinusoidal recomposition and Hilbert transform. IEEE Trans. Biomed. Eng. 62, 296–302 (2015)

    Article  Google Scholar 

  145. R. Vijayakumar, S.K. Vasireddi, P.S. Cuculich, M.N. Faddis, Y. Rudy, Methodology considerations in phase mapping of human cardiac arrhythmias. Circ. Arrhythm. Electrophysiol. 9, 1–11 (2016)

    Article  Google Scholar 

  146. J.M. Miller, R.C. Kowal, V. Swarup, J.P. Daubert, E.G. Daoud, J.D. Day, K.A. Ellenbogen, J.D. Hummel, T. Baykaner, D.E. Krummen, S.M. Narayan, V.Y. Reddy, K. Shivkumar, J.S. Steinberg, K.R. Wheelan, Initial independent outcomes from focal impulse and rotor modulation ablation for atrial fibrillation: multicenter FIRM Registry. J. Cardiovasc. Electrophysiol. 25, 921–929 (2014)

    Article  Google Scholar 

  147. S.M. Narayan, T. Baykaner, P. Clopton, A. Schricker, G.G. Lalani, D.E. Krummen, K. Shivkumar, J.M. Miller, Ablation of rotor and focal sources reduces late recurrence of atrial fibrillation compared with trigger ablation alone. J. Am. Coll. Cardiol. 63, 1761–1768 (2014)

    Article  Google Scholar 

  148. D. Calvo, J. Rubín, D. Pérez, C. Morís, Ablation of rotor domains effectively modulates dynamics of human long-standing persistent atrial fibrillation. Circ. Arrhythm. Electrophysiol. 10 (2017)

    Google Scholar 

  149. E. Buch, M. Share, R. Tung, P. Benharash, P. Sharma, J. Koneru, R. Mandapati, K.A. Ellenbogen, K. Shivkumar, Long-term clinical outcomes of focal impulse and rotor modulation for treatment of atrial fibrillation: a multicenter experience. Heart Rhythm 13, 636–641 (2016)

    Article  Google Scholar 

  150. M. Rodrigo, A.M. Climent, A. Liberos, F. Fernández-Avilés, O. Berenfeld, F. Atienza, M.S. Guillem, Technical considerations on phase mapping for identification of atrial reentrant activity in direct- and inverse-computed electrograms. Circ. Arrhythm. Electrophysiol. 11 (2018)

    Google Scholar 

  151. L.G. Horan, N.C. Flowers, D.A. Brody, Principal factor waveforms of the thoracic QRS-complex. Circ. Res. 14, 131–145 (1964)

    Article  Google Scholar 

  152. A.M. Scher, A.C. Young, W.M. Meredith, Factor analysis of the electrocardiogram test of electrocardiographic theory: normal hearts. Circ. Res. 8, 519–526 (1960)

    Article  Google Scholar 

  153. L.Y. Di Marco, L. Chiari, A wavelet-based ECG delineation algorithm for 32-bit integer online processing. BioMed. Eng. Online 10, 23 (2011)

    Article  Google Scholar 

  154. M.C. Wijffels, R. Dorland, F. Mast, M.A. Allessie, Widening of the excitable gap during pharmacological cardioversion of atrial fibrillation in the goat: effects of cibenzoline, hydroquinidine, flecainide, and d-sotalol. Circulation 102, 260–267 (2000)

    Article  Google Scholar 

  155. M. Holm, S. Pehrsson, M. Ingemansson, L. Sörnmo, R. Johansson, L. Sandhall, M. Sunemark, B. Smideberg, C. Olsson, S.B. Olsson, Non-invasive assessment of atrial refractoriness during atrial fibrillation in man–Introducing, validating, and illustrating a new ECG method. Cardiovasc. Res. 38, 69–81 (1998)

    Article  Google Scholar 

  156. A. Bollmann, N. Kanuru, K. McTeague, P. Walter, D.B. DeLurgio, J. Langberg, Frequency analysis of human atrial fibrillation using the surface electrocardiogram and its response to ibutilide. Am. J. Cardiol. 81, 1439–1445 (1998)

    Article  Google Scholar 

  157. A. Fujiki, T. Tsuneda, M. Sugao, K. Mizumaki, H. Inoue, Usefulness and safety of bepridil in converting persistent atrial fibrillation to sinus rhythm. Am. J. Cardiol. 92, 472–475 (2003)

    Article  Google Scholar 

  158. D. Raine, P. Langley, A. Murray, A. Dunuwille, J.P. Bourke, Surface atrial frequency analysis in patients with atrial fibrillation: a tool for evaluating the effects of intervention. J. Cardiovasc. Electrophysiol. 15, 1021–1026 (2004)

    Article  Google Scholar 

  159. D. Husser, M. Stridh, L. Sörnmo, C. Geller, H.U. Klein, S.B. Olsson, A. Bollmann, Time-frequency analysis of the surface electrocardiogram for monitoring antiarrhythmic drug effects in atrial fibrillation. Am. J. Cardiol. 95, 526–528 (2005)

    Article  Google Scholar 

  160. V.P. Raygor, J. Ng, J.J. Goldberger, Surface ECG f wave analysis of dofetilide drug effect in the atrium. J. Cardiovasc. Electrophysiol. 26, 644–648 (2015)

    Article  Google Scholar 

  161. M. Aunes, K. Egstrup, L. Frison, A. Berggren, M. Stridh, L. Sörnmo, N. Edvardsson, Rapid slowing of the atrial fibrillatory rate after administration of AZD7009 predicts conversion of atrial fibrillation. J. Electrocardiol. 47, 316–323 (2014)

    Article  Google Scholar 

  162. E.P. Gerstenfeld, S. Duggirala, Atrial fibrillation ablation: indications, emerging techniques, and follow-up. Prog. Cardiovasc. Dis. 58, 202–212 (2015)

    Article  Google Scholar 

  163. T. Lankveld, S. Zeemering, D. Scherr, P. Kuklik, B.A. Hoffmann, S. Willems, B. Pieske, M. Haïssaguerre, P. Jaïs, H.J. Crijns, U. Schotten, Atrial fibrillation complexity parameters derived from surface ECGs predict procedural outcome and long-term follow-up of stepwise catheter ablation for atrial fibrillation. Circ. Arrhythm. Electrophysiol. 9, e003354 (2016)

    Article  Google Scholar 

  164. S. Matsuo, N. Lellouche, M. Wright, M. Bevilacqua, S. Knecht, I. Nault, K.T. Lim, L. Arantes, M.D. O’Neill, P.G. Platonov, J. Carlson, F. Sacher, M. Hocini, P. Jaïs, M. Haïssaguerre, Clinical predictors of termination and clinical outcome of catheter ablation for persistent atrial fibrillation. J. Am. Coll. Cardiol. 54, 788–795 (2009)

    Article  Google Scholar 

  165. K. Yoshida, A. Chugh, E. Good, T. Crawford, J. Myles, S. Veerareddy, S. Billakanty, W.S. Wong, M. Ebinger, F. Pelosi, K. Jongnarangsin, F. Bogun, F. Morady, H. Oral, A critical decrease in dominant frequency and clinical outcome after catheter ablation of persistent atrial fibrillation. Heart Rhythm 7, 295–302 (2010)

    Article  Google Scholar 

  166. I. Drewitz, S. Willems, T.V. Salukhe, D. Steven, B.A. Hoffmann, H. Servatius, K. Bock, M. Aydin, K. Wegscheider, T. Meinertz, T. Rostock, Atrial fibrillation cycle length is a sole independent predictor of a substrate for consecutive arrhythmias in patients with persistent atrial fibrillation. Circ. Arrhythm. Electrophysiol. 3, 351–360 (2010)

    Article  Google Scholar 

  167. E.K. Heist, F. Chalhoub, C. Barrett, S. Danik, J.N. Ruskin, M. Mansour, Predictors of atrial fibrillation termination and clinical success of catheter ablation of persistent atrial fibrillation. Am. J. Cardiol. 110, 545–551 (2012)

    Article  Google Scholar 

  168. L.Y. Di Marco, D. Raine, J.P. Bourke, P. Langley, Characteristics of atrial fibrillation cycle length predict restoration of sinus rhythm by catheter ablation. Heart Rhythm 10, 1303–1310 (2013)

    Article  Google Scholar 

  169. P. Kirchhof, S. Benussi, D. Kotecha, A. Ahlsson, D. Atar, B. Casadei, M. Castella, H.C. Diener, H. Heidbuchel, J. Hendriks, G. Hindricks, A.S. Manolis, J. Oldgren, B.A. Popescu, U. Schotten, B. Van Putte, P. Vardas, S. Agewall, J. Camm, G. Baron Esquivias, W. Budts, S. Carerj, F. Casselman, A. Coca, R. De Caterina, S. Deftereos, D. Dobrev, J.M. Ferro, G. Filippatos, D. Fitzsimons, B. Gorenek, M. Guenoun, S.H. Hohnloser, P. Kolh, G.Y. Lip, A. Manolis, J. McMurray, P. Ponikowski, R. Rosenhek, F. Ruschitzka, I. Savelieva, S. Sharma, P. Suwalski, J.L. Tamargo, C.J. Taylor, I.C. Van Gelder, A.A. Voors, S. Windecker, J.L. Zamorano, K. Zeppenfeld, 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 37, 2893–2962 (2016)

    Article  Google Scholar 

  170. N.P. Gall, F.D. Murgatroyd, Electrical cardioversion for AF–the state of the art. Pacing Clin. Electrophysiol. 30, 554–567 (2007)

    Article  Google Scholar 

  171. A. Bollmann, M. Mende, A. Neugebauer, D. Pfeiffer, Atrial fibrillatory frequency predicts atrial defibrillation threshold and early arrhythmia recurrence in patients undergoing internal cardioversion of persistent atrial fibrillation. Pacing Clin. Electrophysiol. 25, 1179–1184 (2002)

    Article  Google Scholar 

  172. F. Holmqvist, M. Stridh, J.E. Waktare, L. Sörnmo, S.B. Olsson, C.J. Meurling, Atrial fibrillatory rate and sinus rhythm maintenance in patients undergoing cardioversion of persistent atrial fibrillation. Eur. Heart J. 27, 2201–2207 (2006)

    Article  Google Scholar 

  173. R. Alcaraz, J.J. Rieta, F. Hornero, Analysis of atrial fibrillation recidivity under successive attempts of electrical cardioversion based on fibrillatory wave amplitude and dominant frequency. J. Med. Biol. Eng. 33, 455–462 (2013)

    Article  Google Scholar 

  174. F. Holmqvist, M. Stridh, J.E.P. Waktare, L. Sörnmo, S.B. Olsson, C.J. Meurling, Atrial fibrillation signal organization predicts sinus rhythm maintenance in patients undergoing cardioversion of atrial fibrillation. Europace 8, 559-565 (2006)

    Article  Google Scholar 

  175. J.N. Watson, P.S. Addison, N. Uchaipichat, A. Shah, N.R. Grubb, Wavelet transform analysis predicts outcome of DC cardioversion for atrial fibrillation patients. Comput. Biol. Med. 37, 517–523 (2007)

    Article  Google Scholar 

  176. R. Alcaraz, J.J. Rieta, Central tendency measure and wavelet transform combined in the non-invasive analysis of atrial fibrillation recordings. Biomed. Eng. Online 11, 46 (2012)

    Article  Google Scholar 

  177. G.B. Moody, Spontaneous termination of atrial fibrillation: a challenge from Physionet and Computers in Cardiology 2004, in Proceedings of Computers in Cardiology, vol. 31 (2004), pp. 101–104

    Google Scholar 

  178. S. Petrutiu, A.V. Sahakian, S. Swiryn, Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans. Europace 9, 466–470 (2007)

    Article  Google Scholar 

  179. Y. Asano, J. Saito, K. Matsumoto, K. Kaneko, T. Yamamoto, U. Masatsugu, On the mechanism of termination and perpetuation of atrial fibrillation. Am. J. Cardiol. 69, 1033–1038 (1992)

    Article  Google Scholar 

  180. H. Sih, K. Ropella, S. Swiryn, E. Gerstenfeld, A.V. Sahakian, Observations from intra-atrial recordings on the termination of electrically induced atrial fibrillation in humans. Pacing Clin. Electrophysiol. 17, 1231–1242 (1994)

    Article  Google Scholar 

  181. A. Fujiki, M. Sakabe, K. Nishida, K. Mizumaki, H. Inoue, Role of fibrillation cycle length in spontaneous and drug-indcued termination of human atrial fibrillation–Spectral analysis of fibrillation waves from surface electrocardiogram. Circ. J. 67, 391–395 (2003)

    Article  Google Scholar 

  182. R. Alcaraz, J.J. Rieta, Application of wavelet entropy to predict atrial fibrillation progression from the surface ECG. Comput. Math. Meth. Med. 13, 1–9 (2012)

    Article  MATH  Google Scholar 

  183. R. Hermida, D. Ayala, F. Portaluppi, Circadian variation of blood pressure: the basis for the chronotherapy of hypertension. Adv. Drug Delivery Rev 59, 904–922 (2007)

    Article  Google Scholar 

  184. J.R. Fernández, R.C. Hermida, A. Mojón, Chronobiological analysis techniques: application to blood pressure. Phil. Trans. R. Soc. A 367, 431–445 (2009)

    Article  MATH  Google Scholar 

  185. C. Bingham, B. Arbogast, C.C. Guillaume, J.K. Lee, F. Halberg, Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia 9, 397–439 (1982)

    Google Scholar 

  186. A. Bollmann, K. Sonne, H. Esperer, I. Toepffer, H. Klein, Circadian variations in atrial fibrillatory frequency in persistent human atrial fibrillation. Pacing Clin. Electrophysiol. 23, 1867–1871 (2000)

    Article  Google Scholar 

  187. C.J. Meurling, J.E. Waktare, F. Holmqvist, A. Hedman, A.J. Camm, S.B. Olsson, M. Malik, Diurnal variations of the dominant cycle length of chronic atrial fibrillation. Am. J. Physiol. 280, H401–H406 (2001)

    Google Scholar 

  188. F. Sandberg, A. Bollmann, D. Husser, M. Stridh, L. Sörnmo, Circadian variation in dominant atrial fibrillation frequency in persistent atrial fibrillation. Physiol. Meas. 31, 531–542 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Sörnmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sörnmo, L., Alcaraz, R., Laguna, P., Rieta, J.J. (2018). Characterization of f Waves. In: Sörnmo, L. (eds) Atrial Fibrillation from an Engineering Perspective. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-68515-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68515-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68513-7

  • Online ISBN: 978-3-319-68515-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics