Skip to main content

Real-Time Detection of Atrial Fibrillation from Short Time Single Lead ECG Traces Using Recurrent Neural Networks

  • Conference paper
  • First Online:
Intelligent Systems Technologies and Applications (ISTA 2017)

Abstract

Atrial fibrillation (AF) is the predominant type of cardiac arrhythmia affecting more than 45 Million individuals globally. It is one of the leading contributors of strokes and hence detecting them in real-time is of paramount importance for early intervention. Traditional methods require long ECG traces and tedious preprocessing for accurate diagnosis. In this paper, we explore and employ deep learning methods such as RNN, LSTM and GRU to detect the Atrial Fibrillation (AF) faster in the given electrocardiogram traces. For this study, we used one of the well-known publicly available MIT-BIH Physionet dataset. To the best of our knowledge this is the first time Deep learning has been employed to detect the Atrial Fibrillation in real-time. Based on our experiments RNN, LSTM and GRU offer the accuracy of 0.950, 1.000 and 1.000 respectively. Our methodology does not require any de-noising, other filtering and preprocessing methods. Results are encouraging enough to begin clinical trials for the real-time detection of AF that will be highly beneficial in the scenarios of ambulatory, intensive care units and for real-time detection of AF for life saving implantable defibrillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Go, A.S., Hylek, E.M., Phillips, K.A., Chang, Y., Henault, L.E., Selby, J.V., Singer, D.E.: Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) study. JAMA 285(18), 2370–2375 (2001)

    Article  Google Scholar 

  2. Anumonwo, J.M., Kalifa, J.: Risk factors and genetics of atrial fibrillation. Cardiol. Clin. 32(4), 485–494 (2014)

    Article  Google Scholar 

  3. Nguyen, T.N., Hilmer, S.N., Cumming, R.G.: Review of epidemiology and management of atrial fibrillation in developing countries. Int. J. Cardiol. 167(6), 2412–2420 (2013)

    Article  Google Scholar 

  4. Calkins, H., Kuck, K.H., Cappato, R., Brugada, J., Camm, A.J., et al.: 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation. Heart Rhythm 9, 632–696.e621 (2012)

    Article  Google Scholar 

  5. Ferguson, C., Inglis, S.C., Newton, P.J., Middleton, S., Macdonald, P.S., Davidson, P.M.: Atrial fibrillation: stroke prevention in focus. ACC 27(2), 92–98 (2013)

    Google Scholar 

  6. McManus, D.D., Lee, J., Maitas, O., Esa, N., Pidikiti, R., Carlucci, A., Harrington, J., Mick, E., Chon, K.H.: A novel application for the detection of an irregular pulse using an iPhone 4S in patients with atrial fibrillation. Heart Rhythm 10(3), 315–319 (2013)

    Article  Google Scholar 

  7. Peterek, T., Zaorálek, L., Dohnálek, P., Gajdos, P.: Recognition of pathological beats in ECG signals based on singular value decomposition of wavelet coefficients and support vector machine. In: 2015 38th International Conference on Telecommunications and Signal Processing (TSP), Prague, pp. 1–5 (2015)

    Google Scholar 

  8. Couto, P., Ramalho, R., Rodrigues, R.: Suppression of false arrhythmia alarms using ECG and pulsatile waveforms. In: Computing in Cardiology Conference (CinC), Nice, pp. 749–752 (2015)

    Google Scholar 

  9. Manikandan, M.S., Ramkumar, B.: Straightforward and robust QRS detection algorithm for wearable cardiac monitor. Healthc. Technol. Lett. 1(1), 40–44 (2014)

    Article  Google Scholar 

  10. Mohan, N., Sachin Kumar, S., Poornachandran, P., Soman, K.P.: Modified variational mode decomposition for power line interference removal in ECG signals. Int. J. Electr. Comput. Eng. 6, 151–159 (2016)

    Google Scholar 

  11. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

    Article  Google Scholar 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  14. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. Neural Comput. 12(10), 2451–2471 (2000)

    Article  Google Scholar 

  15. Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with LSTM recurrent networks. J. Mach. Learn. Res. 3(1), 115–143 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  17. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), Savannah, Georgia, USA (2016)

    Google Scholar 

  18. Moazzezi, R.: Change-based population coding. Ph.D. thesis, UCL (University College London) (2011)

    Google Scholar 

  19. Arunachalam, S.P., Annoni, E.M., Kapa, S., Mulpuru, S.K., Friedman, P.A., Tolkacheva, E.G.: Multiscale frequency technique robustly discriminates normal sinus rhythm and atrial fibrillation. https://www.researchgate.net/publication/316912116

  20. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  21. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Sujadevi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Sujadevi, V.G., Soman, K.P., Vinayakumar, R. (2018). Real-Time Detection of Atrial Fibrillation from Short Time Single Lead ECG Traces Using Recurrent Neural Networks. In: Thampi, S., Mitra, S., Mukhopadhyay, J., Li, KC., James, A., Berretti, S. (eds) Intelligent Systems Technologies and Applications. ISTA 2017. Advances in Intelligent Systems and Computing, vol 683. Springer, Cham. https://doi.org/10.1007/978-3-319-68385-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68385-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68384-3

  • Online ISBN: 978-3-319-68385-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics