Skip to main content

Ab Initio Molecular Dynamics Studies of Fast Ion Conductors

  • Chapter
  • First Online:

Abstract

Ab initio molecular dynamics (AIMD) is emerging as a computational technique of choice in the study of the kinetics of materials, especially fast ionic conductors that are of immense interest to energy storage and other application. In this chapter, we will first provide an introduction of the theoretical underpinnings of AIMD, including both the Car-Parrinello and Born-Oppenheimer variants and the analysis of such simulations for diffusion properties. As for defects that are frequently introduced via aliovalent doping and are crucial for tuning the ionic conductivity in the conductors, we will briefly discuss the first principles techniques that allow us to measure the dopability of materials. Finally, we will review several application-driven examples, such as electrolytes for solid oxide fuel cells and rechargeable alkali-ion batteries, wherein AIMD techniques have provided useful insights for materials design.

This is a preview of subscription content, log in via an institution.

References

  1. Minh, N.Q.: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563–588 (1993)

    Article  Google Scholar 

  2. Rhodes, W.: Agglomerate and particle size effects on sintering yttria-stabilized zirconia. J. Am. Ceram. Soc. 64, 19–22 (1981)

    Article  Google Scholar 

  3. Logothetis, E.M.: ZrO2 oxygen sensors in automotive applications. ‘Science and Technology of Zirconia’. In: Proceedings of the 1st International Conference Held at Cleveland. Advances in Ceramics, p. 388 (1980)

    Google Scholar 

  4. Singhal, S.C.: Advances in solid oxide fuel cell technology. Solid State Ionics 135, 305–313 (2000)

    Article  Google Scholar 

  5. Deng, Z., Mo, Y., Ong, S.P.: Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries. NPG Asia Mater. 8, e254 (2016)

    Article  Google Scholar 

  6. Hayashi, A., Noi, K., Sakuda, A., Tatsumisago, M.: Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012)

    Article  Google Scholar 

  7. Knauth, P.: Inorganic solid Li ion conductors: an overview. Solid State Ionics 180, 911–916 (2009)

    Article  Google Scholar 

  8. Bachman, J.C., Muy, S., Grimaud, A., Chang, H.-H., Pour, N., Lux, S.F., Paschos, O., Maglia, F., Lupart, S., Lamp, P., Giordano, L., Shao-Horn, Y.: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016)

    Article  Google Scholar 

  9. Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., Mitsui, A.: A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011)

    Article  Google Scholar 

  10. Seino, Y., Ota, T., Takada, K., Hayashi, A., Tatsumisago, M.: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014)

    Article  Google Scholar 

  11. Vineyard, G.H.: Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3, 121–127 (1957)

    Article  Google Scholar 

  12. Jónsson, H., Mills, G., Jacobsen, K.W.: Nudged elastic band method for finding minimum energy paths of transitions. In: Classical and Quantum Dynamics in Condensed Phase Simulations: Proceedings of the International School of Physics. World Scientific Publishing, Singapore (1998)

    Google Scholar 

  13. Voter, A.F.: Introduction to the kinetic Monte Carlo method. Radiat. Eff. Solids 235, 1–23 (2007)

    Article  Google Scholar 

  14. Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977)

    Article  Google Scholar 

  15. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)

    Article  Google Scholar 

  16. Car, R., Parrinello, M.: Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985)

    Article  Google Scholar 

  17. Chroneos, A., Yildiz, B., Tarancón, A., Parfitt, D., Kilner, J.A.: Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy Environ. Sci. 4, 2774 (2011)

    Article  Google Scholar 

  18. Urban, A., Seo, D.-H., Ceder, G.: Computational understanding of Li-ion batteries. NPJ Comput. Mater. 2, 16002 (2016)

    Article  Google Scholar 

  19. Pedone, A., Malavasi, G., Menziani, M.C., Cormack, A.N., Segre, U.: A new self-consistent empirical interatomic potential model for oxides, silicates, and silicas-based glasses. J. Phys. Chem. B 110, 11780–11795 (2006)

    Article  Google Scholar 

  20. Adams, S., Prasada Rao, R.: Structural requirements for fast lithium ion migration in Li10GeP2S12. J. Mater. Chem. 22, 7687 (2012)

    Article  Google Scholar 

  21. Islam, M.S., Fisher, C.A.J., Islam, S.M., Fisher, C.A.J.: Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43, 185–204 (2014)

    Article  Google Scholar 

  22. Hutter, J.: Car-Parrinello molecular dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 604–612 (2012)

    Article  Google Scholar 

  23. Gibson, D.A., Ionova, I.V., Carter, E.A.: A comparison of Car-Parrinello and Born-Oppenheimer generalized valence bond molecular dynamics. Chem. Phys. Lett. 240, 261–267 (1995)

    Article  Google Scholar 

  24. Wentzcovitch, R.M., Martins, J.L.: First principles molecular dynamics of Li: test of a new algorithm. Solid State Commun. 78, 831–834 (1991)

    Article  Google Scholar 

  25. Barnett, R.N., Landman, U.: Born-Oppenheimer molecular-dynamics simulations of finite systems: structure and dynamics of (H˙2O)˙2. Phys. Rev. B 48, 2081 (1993)

    Article  Google Scholar 

  26. Marx, D., Hutter, J.: Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  27. Murch, G.: The haven ratio in fast ionic conductors. Solid State Ionics 7, 177–198 (1982)

    Article  Google Scholar 

  28. Bron, P., Johansson, S., Zick, K., auf der Günne, J.S., Dehnen, S.S., Roling, B.: Li10SnP2S12 – an affordable lithium superionic conductor Li10SnP2S12 – an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013)

    Google Scholar 

  29. Morgan, B.J., Madden, P.A.: Relationships between atomic diffusion mechanisms and ensemble transport coefficients in crystalline polymorphs. Phys. Rev. Lett. 112, 145901 (2014)

    Article  Google Scholar 

  30. Zhu, Z., Chu, I.-H., Deng, Z., Ong, S.P.: Role of Na+ interstitials and dopants in enhancing the Na+ conductivity of the cubic Na3PS4 superionic conductor. Chem. Mater. 27, 8318–8325 (2015)

    Article  Google Scholar 

  31. Richards, W.D., Tsujimura, T., Miara, L., Wang, Y., Kim, J.C., Ong, S.P., Uechi, I., Suzuki, N., Ceder, G.: Design and synthesis of the superionic conductor Na10SnP2S12. Nat. Commun. 7, 1–8 (2016)

    Article  Google Scholar 

  32. Wang, Y., Richards, W.D., Ong, S.P., Miara, L.J., Kim, J.C., Mo, Y., Ceder, G.: Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015)

    Article  Google Scholar 

  33. Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511 (1984)

    Article  Google Scholar 

  34. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  Google Scholar 

  35. Tanibata, N., Noi, K., Hayashi, A., Kitamura, N., Idemoto, Y., Tatsumisago, M.: X-ray crystal structure analysis of sodium-ion conductivity in 94Na3PS4•6Na4SiS4 glass-ceramic electrolytes. ChemElectroChem 1, 1130–1132 (2014)

    Article  Google Scholar 

  36. Tanibata, N., Noi, K., Hayashi, A., Tatsumisago, M.: Preparation and characterization of highly sodium ion conducting Na3PS4-Na4SiS4 solid electrolytes. RSC Adv. 4, 17120 (2014)

    Article  Google Scholar 

  37. Kato, Y., Hori, S., Saito, T., Suzuki, K., Hirayama, M., Mitsui, A., Yonemura, M., Iba, H., Kanno, R.: High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016)

    Article  Google Scholar 

  38. Ishihara, T., Matsuda, H., Takita, Y.: Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 116, 3801–3803 (1994)

    Article  Google Scholar 

  39. Bo, S.H., Wang, Y., Kim, J.C., Richards, W.D., Ceder, G.: Computational and experimental investigations of Na-ion conduction in cubic Na3PSe4. Chem. Mater. 28, 252–258 (2016)

    Article  Google Scholar 

  40. Zhang, Y., Zhao, Y., Chen, C.: Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites. Phys. Rev. B 87, 134303 (2013)

    Article  Google Scholar 

  41. Deng, Z., Radhakrishnan, B., Ong, S.P.: Rational composition optimization of the lithium-rich Li˙3OCl˙1 − xBr˙x anti-perovskite superionic conductors. Chem. Mater. 27, 3749–3755 (2015)

    Article  Google Scholar 

  42. Murugan, R., Thangadurai, V., Weppner, W.: Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007)

    Article  Google Scholar 

  43. Allen, J.L., Wolfenstine, J., Rangasamy, E., Sakamoto, J.: Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J. Power Sources 206, 315–319 (2012)

    Article  Google Scholar 

  44. Kuhn, A., Gerbig, O., Zhu, C., Falkenberg, F., Maier, J., Lotsch, B.V.: A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. Phys. Chem. Chem. Phys. 16, 14669–14674 (2014)

    Article  Google Scholar 

  45. Zhou, P., Wang, J., Cheng, F., Li, F., Chen, J.: A solid lithium superionic conductor Li11AlP2S12 with thio-LISICON analogous structure. Chem. Commun. 52, 6091–6094 (2016)

    Article  Google Scholar 

  46. Wei, S.-H., Zhang, S.: Chemical trends of defect formation and doping limit in II–VI semiconductors: the case of CdTe. Phys. Rev. B 66, 1–10 (2002)

    Google Scholar 

  47. Mellander, B.-E.: Electrical conductivity and activation volume of the solid electrolyte phase a-AgI and the high-pressure phase fcc AgI. Phys. Rev. B 26, 5886 (1982)

    Article  Google Scholar 

  48. Kvist, A., Josefson, A.-M.: The electrical conductivity of solid and molten silver iodide. Zeitschriftfir Naturforschung 23, 625 (1968)

    Google Scholar 

  49. Funke, K.: AgI-type solid electrolytes. Prog. Solid State Chem. 11, 345–402 (1976)

    Article  Google Scholar 

  50. Kawakita, Y., Enosaki, T., Takeda, S., Maruyama, K.: Structural study of molten Ag halides and molten AgCl–AgI mixture. J. Non-Cryst. Solids 353, 3035–3039 (2007)

    Article  Google Scholar 

  51. Shimojo, F., Aniya, M., Hoshino, K.: Anomalous cation-cation interactions in molten CuI: Ab initio molecular-dynamics simulations. J. Phys. Soc. Jpn. 73, 2148–2153 (2004)

    Article  Google Scholar 

  52. Mohn E.C., Stolen, S., Hull, S.: Diffusion within α-CuI studied using ab initio molecular dynamics simulations. J. Phys. Condens. Matter 21, 335403 (2009)

    Article  Google Scholar 

  53. Shimojo, F., Inoue, T., Aniya, M., Sugahara, T., Miyata, Y.: Ab initio molecular-dynamics study of static structure and bonding properties of molten AgI. J. Phys. Soc. Jpn. 75, 1–7 (2006)

    Article  Google Scholar 

  54. Wood, B.C., Marzari, N.: Dynamical structure, bonding, and thermodynamics of the superionic sublattice in α-AgI. Phys. Rev. Lett. 97, 1–4 (2006)

    Article  Google Scholar 

  55. Sun, S.-R., Xia, D.-G.: An ab-initio calculation study on the super ionic conductors α-AgI and Ag2X (X = S, Se) with BCC structure. Solid State Ionics 179, 2330–2334 (2008)

    Article  Google Scholar 

  56. Steele, B.C., Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345–352 (2001)

    Article  Google Scholar 

  57. Lacorre, P., Goutenoire, F., Bohnke, O., Retoux, R., Laligant, Y.: Designing fast oxide-ion conductors based on La2Mo2O9. Nature 404, 856–858 (2000)

    Article  Google Scholar 

  58. Wachsman, E.D., Lee, K.T.: Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011)

    Article  Google Scholar 

  59. Goodenough, J.B.: Ceramic technology: oxide-ion conductors by design. Nature 404, 821–823 (2000)

    Article  Google Scholar 

  60. Zhu, B., Li, S., Mellander, B.E.: Theoretical approach on ceria-based two-phase electrolytes for low temperature (300–600 C) solid oxide fuel cells. Electrochem. Commun. 10, 302–305 (2008)

    Google Scholar 

  61. Mogensen, M., Lindegard, T., Hansen, U.R.: Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2. J. Electrochem. Soc. 141, 2122–2128 (1994)

    Article  Google Scholar 

  62. Huang, K., Wan, J.-H., Goodenough, J.B.: Increasing power density of LSGM-based solid oxide fuel cells using new anode materials. J. Electrochem. Soc. 148, A788 (2001)

    Article  Google Scholar 

  63. Ishihara, T., Tabuchi, J., Ishikawa, S., Yan, J., Enoki, M., Matsumoto, H.: Recent progress in LaGaO3 based solid electrolyte for intermediate temperature SOFCs. Solid State Ionics 177, 1949–1953 (2006)

    Article  Google Scholar 

  64. Chaopradith, D.T., Scanlon, D.O., Catlow, C.R.A.: Adsorption of water on yttria-stabilized zirconia. J. Phys. Chem. C 119, 22526–22533 (2015)

    Article  Google Scholar 

  65. An, W., Turner, C.H.: One-dimensional Ni-based nanostructures and their application as solid oxide fuel cell anodes: a DFT investigation. 117, 1315–1322 (2013)

    Google Scholar 

  66. Pietrucci, F., Bernasconi, M., Laio, A., Parrinello, M.: Vacancy-vacancy interaction and oxygen diffusion in stabilized cubic ZrO2 from first principles. Phys. Rev. B Condens. Matter Mater. Phys. 78, 1–7 (2008)

    Google Scholar 

  67. He, X., Mo, Y.: Accelerated materials design of Na˙0. 5Bi˙0. 5TiO˙3 oxygen ionic conductors based on first principles calculations. Phys. Chem. Chem. Phys. 17, 18035–18044 (2015)

    Google Scholar 

  68. Li, M., Pietrowski, M.J., De Souza, R.A., Zhang, H., Reaney, I.M., Cook, S.N., Kilner, J.A., Sinclair, D.C.: A family of oxide ion conductors based on the ferroelectric perovskite Na˙0. 5Bi˙0. 5TiO3. Nat. Mater. 13, 31–5 (2014)

    Google Scholar 

  69. Haavik, C., Ottesen, E.M., Nomura, K., Kilner, J.A., Norby, T.: Temperature dependence of oxygen ion transport in Sr+Mg-substituted LaGaO3 (LSGM) with varying grain sizes. Solid State Ionics 174, 233–243 (2004)

    Article  Google Scholar 

  70. Jung, D.W., Duncan, K.L., Wachsman, E.D.: Effect of total dopant concentration and dopant ratio on conductivity of (DyO˙1. 5)˙x−(WO˙3)˙y−(BiO˙1. 5)˙1 − xy. Acta Mater. 58, 355–363 (2010)

    Google Scholar 

  71. Thangadurai, V., Kaack, H., Weppner, W.J.F.: Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M: Nb, Ta). ChemInform 34, 437–440 (2003)

    Google Scholar 

  72. Ong, S.P., Mo, Y., Richards, W.D., Miara, L., Lee, H.S., Ceder, G.: Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ. Sci. 6, 148–156 (2013)

    Article  Google Scholar 

  73. Chu, I.-H., Nguyen, H., Hy, S., Lin, Y.-C., Wang, Z., Xu, Z., Deng, Z., Meng, Y.S., Ong, S.P.: Insights into the performance limits of the Li7P3S11 superionic conductor: a combined first-principles and experimental study. ACS Appl. Mater. Interfaces 8, 7843–7853 (2016)

    Article  Google Scholar 

  74. Bernstein, N., Johannes, M., Hoang, K.: Origin of the structural phase transition in Li7La3Zr2O12. Phys. Rev. Lett. 109, 205702 (2012)

    Article  Google Scholar 

  75. Jalem, R., Yamamoto, Y., Shiiba, H., Nakayama, M., Munakata, H., Kasuga, T., Kanamura, K.: Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12. Chem. Mater. 25, 425–430 (2013)

    Article  Google Scholar 

  76. Mo, Y., Ong, S.P., Ceder, G.: First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15–17 (2012)

    Article  Google Scholar 

  77. Radhakrishnan, B., Ong, S.P.: Aqueous stability of alkali superionic conductors from first principles calculations. Front. Energy Res. 4, 1–12 (2016)

    Article  Google Scholar 

  78. Richards, W.D., Miara, L.J., Wang, Y., Kim, J.C., Ceder, G.: Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2015)

    Article  Google Scholar 

  79. Zhu, Y., He, X., Mo, Y.: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015)

    Article  Google Scholar 

  80. Zhu, Y., He, X., Mo, Y.: First principles study on electrochemical and chemical stability of the solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 1–14 (2015)

    Google Scholar 

  81. Goodenough, J., Hong, H.-P., Kafalas, J.: Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976)

    Article  Google Scholar 

  82. Inaguma, Y., Liquan, C., Itoh, M., Nakamura, T.: High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993)

    Article  Google Scholar 

  83. Deviannapoorani, C., Dhivya, L., Ramakumar, S., Murugan, R.: Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets. J. Power Sources 240, 18–25 (2013)

    Article  Google Scholar 

  84. Awaka, J., Kijima, N., Hayakawa, H., Akimoto, J.: Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J. Solid State Chem. 182, 2046–2052 (2009)

    Article  Google Scholar 

  85. Meier, K., Laino, T., Curioni, A.: Solid-state electrolytes: revealing the mechanisms of Li-Ion conduction in tetragonal and cubic LLZO by first-principles calculations. J. Phys. Chem. C 118, 6668–6679 (2014)

    Article  Google Scholar 

  86. Rangasamy, E., Wolfenstine, J., Sakamoto, J.: The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics 206, 28–32 (2012)

    Article  Google Scholar 

  87. Geiger, C.A., Alekseev, E., Lazic, B., Fisch, M., Armbruster, T., Langner, R., Fechtelkord, M., Kim, N., Pettke, T., Weppner, W.: Crystal chemistry and sability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg. Chem. 50, 1089–1097 (2011)

    Article  Google Scholar 

  88. Miara, L.J., Ong, S.P., Mo, Y., Richards, W.D., Park, Y., Lee, J.-M., Lee, H.S., Ceder, G.: Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li˙7 + 2xy(La˙3 − xRb˙x)(Zr˙2 − yTa˙y)O˙12 (0 ≤ x ≤ 0.375, 0 ≤ y ≤ 1) superionic conductor: a first principles investigation. Chem. Mater. 25, 3048–3055 (2013)

    Google Scholar 

  89. Zhu, Z., Chu, I.-H., Ong, S.P.: Li3Y(PS4)2 and Li5PS4Cl2: new lithium superionic conductors predicted from silver thiophosphates using efficiently tiered Ab initio molecular dynamics simulations. Chem. Mater. 29, 2474–2484 (2017)

    Article  Google Scholar 

  90. Deng, Z., Zhu, Z., Chu, I.-H., Ong, S.P.: Data-driven first-principles methods for the study and design of alkali superionic conductors. Chem. Mater. 29, 281–288 (2017)

    Article  Google Scholar 

  91. Sankey, O.F., Niklewski, D.J.: Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. Phys. Rev. B 40, 3979–3995 (1989)

    Article  Google Scholar 

  92. Field, M.J., Bash, P.A., Karplus, M.: A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comp. Chem. 11, 700–733 (1990)

    Article  Google Scholar 

  93. Woo, T.K., Margl, P.M., Blöchl, P.E., Ziegler, T.: A combined car-parrinello QM/MM implementation for ab initio molecular dynamics simulations of extended systems: application to transition metal catalysis. J. Phys. Chem. B 101, 7877–7880 (1997)

    Article  Google Scholar 

  94. Marx, D., Parrinello, M.: Ab initio path integral molecular dynamics: basic ideas. J. Chem. Phys. 104, 4077 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyue Ping Ong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, Z., Deng, Z., Chu, IH., Radhakrishnan, B., Ping Ong, S. (2018). Ab Initio Molecular Dynamics Studies of Fast Ion Conductors. In: Shin, D., Saal, J. (eds) Computational Materials System Design. Springer, Cham. https://doi.org/10.1007/978-3-319-68280-8_7

Download citation

Publish with us

Policies and ethics