Skip to main content

Echocardiographic Assessment of Myocardial Mechanics: Velocity, Strain, Strain Rate and Torsion

  • Chapter
  • First Online:
Case-Based Textbook of Echocardiography

Abstract

Echocardiography has been routinely used for assessment of cardiac mechanics. M-Mode and two dimensional echocardiography provide semi-quantitative data in the context of ventricular function and have limited ability in defining subtle changes in the function. Doppler tissue imaging (DTI) and Speckle tracking echocardiography (STE), two newer techniques, have emerged greater concerns for their role in quantification of ventricular systolic and diastolic function. These methods are more objective and provide more reproducible results. This chapter focuses on the technical properties of DTI, STE and tortional parameters and their clinical implication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

DT:

Doppler tissue

DTI:

Doppler tissue imaging

ET:

Ejection time

GCS:

Global circumferential strain

GLS:

Global longitudinal strain

GRS:

Global radial strain

IVA:

Isovolumic acceleration

IVCT:

Isovolumic contraction time

IVRT:

Isovolumic relaxation time

MPI:

Myocardial performance index

ROI:

Region of interest

RV:

Right ventricular

SR:

Strain rate

STE:

Speckle-tracking echocardiography

References

  1. Kostis JB, Mavrogeorgis E, Slater A, et al. Use of a range gated, pulsed ultrasonic Doppler technique for continuous measurement of velocity of the posterior heart wall. Chest. 1972;62(5):597–604.

    Article  CAS  Google Scholar 

  2. McDicken WN, Sutherland GR, Moran CM, et al. Colour Doppler velocity imaging of the myocardium. Ultrasound Med Biol. 1992;18(6–7):651–4.

    Article  CAS  Google Scholar 

  3. Miyatake K, Yamagishi M, Tanaka N, et al. New method for evaluating left ventricular wall motion by color-coded tissue Doppler imaging: in vitro and in vivo studies. J Am Coll Cardiol. 1995;25(3):717–24.

    Article  CAS  Google Scholar 

  4. Geyer H, Caracciolo G, Abe H, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23(4):351–69.

    Article  Google Scholar 

  5. Notomi Y, Setser RM, Shiota T, et al. Assessment of left ventricular torsional deformation by Doppler tissue imaging: validation study with tagged magnetic resonance imaging. Circulation. 2005;111:1141–7.

    Article  Google Scholar 

  6. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr. 2011;12:167–205.

    Article  Google Scholar 

  7. Otto CM. Advanced echocardiographic modalities. In: Textbook of clinical echocardiography. 5th ed. Philadelphia, PA: Elsevier Saunders; 2013. p. 98–103.

    Google Scholar 

  8. Sutherland GR, Bijnens B, McDicken WN. Tissue Doppler echocardiography: historical perspective and technological considerations. Echocardiography. 1999;16(5):445–53.

    Article  Google Scholar 

  9. Abraham TP, Dimaano VL, Liang HY. Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation. 2007;116:2597–609.

    Article  Google Scholar 

  10. Gilman G, Khandheria BK, Hagen ME, et al. Strain rate and strain: a step-by-step approach to image and data acquisition. J Am Soc Echocardiogr. 2004;17:1011–20.

    Article  Google Scholar 

  11. D’Hooge J, Heimdal A, Jamal F, et al. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr. 2000;1:154–70.

    Article  Google Scholar 

  12. Lang RM, Goldstein SA, Kronzon I, Khandheria BK, Mor-Avi V. ASE’s comprehensive echocardiography. 2nd ed. Philadelphia, PA: Elsevier Saunders; 2016. p. 13–6.

    Google Scholar 

  13. Heimdal A, Stoylen A, Torp H, Skjaerpe T. Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiogr. 1998;11:1013–9.

    Article  CAS  Google Scholar 

  14. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA. Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation. 2000;102:1158–64.

    Article  CAS  Google Scholar 

  15. Gillam LD, Otto CM. Advanced approaches in echocardiography. Philadelphia, PA: Elsevier Saunders; 2012. p. 84–114.

    Google Scholar 

  16. Brown J, Jenkins C, Marwick TH. Use of myocardial strain to assess global left ventricular function: a comparison with cardiac magnetic resonance and 3-dimensional echocardiography. Am Heart J. 2009;157:102–5.

    Article  Google Scholar 

  17. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol. 2006;47:789–93.

    Article  Google Scholar 

  18. Biswas M, Sudhakar S, Nanda NC, Buckberg G, Prradhan M, Roomi AU, et al. Two- and three-dimensional speckle tracking echocardiography: clinical applications and future directions. Echocardiography. 2013;30(1):88–105.

    Article  Google Scholar 

  19. Gjesdal O, Hopp E, Vartdal T, Lunde K, Helle-Valle T, Aakhus S, et al. Global longitudinal strain measured by two-dimensional speckle tracking echocardiography is closely related to myocardial infarct size in chronic ischaemic heart disease. Clin Sci (Lond). 2007;113:287–96.

    Article  Google Scholar 

  20. Nesser HJ, Mor-Avi V, Gorissen W, Weinert L, Steringer-Mascherbauer R, Niel J, et al. Quantification of left ventricular volumes using three- dimensional echocardiographic speckle tracking: comparison with MRI. Eur Heart J. 2009;30:1565–73.

    Article  Google Scholar 

  21. Maffessanti F, Nesser HJ, Weinert L, Steringer-Mascherbauer R, Niel J, Gorissen W, et al. Quantitative evaluation of regional left ventricular function using three-dimensional speckle tracking echocardiography in patients with and without heart disease. Am J Cardiol. 2009;104:1755–62.

    Article  Google Scholar 

  22. Kuznetsova T, Herbots L, Richart T, D’hooge J, Thijs L, Fagard RH, et al. Left ventricular strain and strain rate in a general population. Eur Heart J. 2008;29:2014–23.

    Article  Google Scholar 

  23. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.

    Article  Google Scholar 

  24. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, et al. Recommendations for the Evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29:277–314.

    Article  Google Scholar 

  25. Marwick TH. Measurement of strain and strain rate by echocardiography ready for prime time? J Am Coll Cardiol. 2006;47:1313–27.

    Article  Google Scholar 

  26. Jurcut R, Wildiers H, Ganame J, D’hooge J, De BJ, Denys H, et al. Strain rate imaging detects early cardiac effects of pegylated liposomal Doxoru- bicin as adjuvant therapy in elderly patients with breast cancer. J Am Soc Echocardiogr. 2008;21:1283–9.

    Article  Google Scholar 

  27. Poorzand H, Mirfeizi SZ, Javanbakht A, Alimi H. Comparison of echocardiographic variables between systemic lupus erythematosus patients and a control group. Arch Cardiovasc Imag. 2015;3(2):eee30009.

    Google Scholar 

  28. Sengupta PP, Mohan JC, Mehta V, Arora R, Pandian NG, Khandheria BK. Accuracy and pitfalls of early diastolic motion of the mitral annulus for diagnosing constrictive pericarditis by tissue Doppler imaging. Am J Cardiol. 2004;93:886–90.

    Article  Google Scholar 

  29. Claus P, Salem Omar AM, Pedrizzetti G, Sengupta PP, Nagel E. Tissue tracking technology for assessing cardiac mechanics principles, normal values, and clinical applications. J Am Coll Cardiol Img. 2015;8:1444–60.

    Article  Google Scholar 

  30. Cardim N, Oliveira AG, Longo S, Ferreira T, Pereira A, Reis RP, et al. Doppler tissue imaging: regional myocardial function in hypertrophic cardiomyopathy and in athlete’s heart. J Am Soc Echocardiogr. 2003;16:223–32.

    Article  Google Scholar 

  31. Narula J, Vannan M, DeMaria AN. Of that waltz in my heart. JACC. 2007;49:917–20.

    Article  Google Scholar 

  32. Notomi Y, Lysyansky P, Setser RM, et al. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol. 2005;45:2034–41.

    Article  Google Scholar 

  33. Nanda NC. Comprehensive textbook of echocardiography. New Delhi: Jaypee Brothers Medical Publishers; 2014, p.363.

    Google Scholar 

  34. Tigen MK, Karaahmet T, Gurel E, Dundar C, Pala S, Cevik C, Akcakoyun M, Basaran Y. The role of isovolumic acceleration in predicting subclinical right and left ventricular systolic dysfunction in hypertensive obese patients. Turk Kardiyol Dern Ars. 2011;39(1):9–15.

    PubMed  Google Scholar 

  35. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher M, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713.

    Article  Google Scholar 

  36. Nagueh SF, Sun H, Kopelen HA, et al. Hemodynamic determinants of the mitral annulus diastolic velocities by tissue Doppler. J Am Coll Cardiol. 2001;37:278–85.

    Article  CAS  Google Scholar 

  37. Saraiva RM, Demirkol S, Buakhamsri A, Greenberg N, Popovic ZB, Thomas JD, et al. Left atrial strain measured by two-dimensional speckle tracking represents a new tool to evaluate left atrial function. J Am Soc Echocardiogr. 2010;23:172–80.

    Article  Google Scholar 

  38. Cameli M, Caputo M, Mondillo S, Ballo P, Palmerini E, Lisi M, et al. Feasibility and reference values of left atrial longitudinal strain imaging by two-dimensional speckle tracking. Cardiovasc Ultrasound. 2009;7:6.

    Article  Google Scholar 

  39. Ojaghi Z, Alizadehasl A, Maleki M, Naderi N, Esmaeilzadeh M, Noohi F, Azarfarin R. Echocardiographic assessment of right atrium deformation indices in healthy young subjects. Arch Cardiovasc Imaging. 2013;1(1):2–7.

    Article  Google Scholar 

  40. Ojaghi-Haghighi Z, Alizadehasl A, Hashemi A. Reverse left ventricular apical rotation in dilated cardiomyopathy. Arch Cardiovasc Imaging. 2015;3(2):e28112.

    Article  Google Scholar 

  41. Naderi N, Ojaghi Z, Pezeshki S, Alizadehasl A. Quantitative assessment of right atrial function by strain imaging in adult patients with totally corrected tetralogy of fallot. Arch Cardiovasc Imaging. 2013;1(1):8–12.

    Google Scholar 

  42. Sadeghpour A. Incremental value of left atrium two-dimensional strain in patients with heart failure. Arch Cardiovasc Image. 2013;1(2):49–50. https://doi.org/10.5812/acvi.15896.

    Article  Google Scholar 

  43. Ojaghi Haghighi Z, Mostafavi A, Anita S, Peighambari MM, Alizadehasl A, Moladoust H, Ojaghi Haghighi H. Echocardiographic assessment of left ventricular twisting and untwisting rate in normal subjects by tissue Doppler and velocity vector imaging: comparison of two methods. Arch Cardiovasc Imaging. 2013;1(2):63–71. https://doi.org/10.5812/acvi.14289.

    Article  Google Scholar 

  44. Zahra Ojaghi Haghighi S, Alizadehasl A, Ardeshiri M, Peighambari MM, Moladust H, Sameie N, et al. The torsional parameters in patients with nonischemic dilated cardiomyopathy. Arch Cardiovasc Imaging. 2015;3(1):e26751. https://doi.org/10.5812/acvi.26751.

    Article  Google Scholar 

  45. Alizadehasl A, Sadeghpour A, Hali RR, Bakhshandeh H, Badano L. Assessment of left and right ventricular rotational interdependence: a speckle tracking echocardiographic study. Echocardiogr J. 2017;34(3):415–21.

    Article  Google Scholar 

  46. Saha SK. Pulmonary arterial hypertension: a two-dimensional echocardiographic approach from screening to prognosis. Arch Cardiovasc Imaging. 2016;4(2):e41818. https://doi.org/10.5812/acvi.41818.

    Article  Google Scholar 

  47. Mihaila S, Cucchini U, Marzaro A, Muraru D, Andras K, Altiok E, Vinereanu D, Sadeghpour A, Alizadehasl A, Badano LP, Becker M. Fully automated measurements of left atrial volume are highly feasible and accurate compared to expert manual measurements: a comparative multi-center study using a novel automated analysis algorithm. In: Abstract presentation. ESC; 2017.

    Google Scholar 

  48. Salehi R, Alizadehasl A. Tissue Doppler imaging values in hypertrophic cardiomyopathy according to left ventricular outflow gradient. J Cardiovasc Thorac Res. 2011;2(4):19–22.

    Google Scholar 

  49. Alizadehasl A, Haghighi SZO, Sadeghpour A, Bezanjani FN. Echocardiographic assessment of left ventricle torsional parameters by tissue Doppler and velocity vector imaging: comparison of the two Methods. J Am Coll Cardiol. 2013;1(2):63–71.

    Google Scholar 

  50. Alizadehasl A, Azarfarin R. Tissue Doppler imaging findings including Prominent S wave in patients with mitral valve prolapse. Arch Cardiovasc Imaging. 2014;1(3):e17123.

    Google Scholar 

  51. Kyavar M, Sadeghpour A, Hashemi A, Alizadehasl A, Sanati HR, Hashemi A. The prognostic value of mitral annulus velocities by tissue Doppler imaging after first anterolateral myocardial infarction. Iranian Heart J. 2013;13(4):(Scopus).

    Google Scholar 

  52. Voigt JU, Lindenmeier G, Exner B, Regenfus M, Werner D, Reulbach U, Nixdorff U, Flachskampf FA, Daniel WG. Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr. 2003;16(5):415–423.

    Article  Google Scholar 

  53. Manish B, Ravi R. Kasliwal. How do I do it? Speckle-tracking echocardiography. Indian Heart J. 2013;165:117–23.

    Google Scholar 

  54. Blessberger H, Binder T. Non-invasive imaging: two dimensional speckle tracking echocardiography: basic principles. Heart. 2010;96:716–722.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poorzand, H., Sadeghpour, A., Alizadehasl, A., Saha, S. (2018). Echocardiographic Assessment of Myocardial Mechanics: Velocity, Strain, Strain Rate and Torsion. In: Sadeghpour, A., Alizadehasl, A. (eds) Case-Based Textbook of Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-67691-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67691-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67689-0

  • Online ISBN: 978-3-319-67691-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics