Skip to main content

Uncertainty Estimation in Vascular Networks

  • Conference paper
  • First Online:
Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics (GRAIL 2017, MICGen 2017, MFCA 2017)

Abstract

Reconstructing vascular networks is a challenging task in medical image processing as automated methods have to deal with large variations in vessel shape and image quality. Recent methods have addressed this problem as constrained maximum a posteriori (MAP) inference in a graphical model, formulated over an overcomplete network graph. Manual control and adjustments are often desired in practice and strongly benefit from indicating the uncertainties in the reconstruction or presenting alternative solutions. In this paper, we examine two different methods to sample vessel network graphs, a perturbation and a Gibbs sampler, and thereby estimate marginals. We quantitatively validate the accuracy of the approximated marginals using true marginals, computed by enumeration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lesage, D., Angelini, E., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)

    Article  Google Scholar 

  2. Türetken, E., Benmansour, F., Andres, B., Glowacki, P., Pfister, H., Fua, P.: Reconstructing curvilinear networks using path classifiers and integer programming. IEEE Trans. Pattern Anal. Mach. Intell. 38(12), 2515–2530 (2016)

    Article  Google Scholar 

  3. Rempfler, M., Schneider, M., Ielacqua, G.D., Xiao, X., Stock, S.R., Klohs, J., Székely, G., Andres, B., Menze, B.H.: Reconstructing cerebrovascular networks under local physiological constraints by integer programming. Med. Image Anal. 25(1), 86–94 (2015)

    Article  Google Scholar 

  4. Rempfler, M., Andres, B., Menze, B.H.: The minimum cost connected subgraph problem in medical image analysis. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 397–405. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_46

    Chapter  Google Scholar 

  5. Payer, C., Pienn, M., Blint, Z., Shekhovtsov, A., Talakic, E., Nagy, E., Olschewski, A., Olschewski, H., Urschler, M.: Automated integer programming based separation of arteries and veins from thoracic CT images. Med. Image Anal. 34, 109–122 (2016)

    Article  Google Scholar 

  6. Robben, D., Türetken, E., Sunaert, S., Thijs, V., Wilms, G., Fua, P., Maes, F., Suetens, P.: Simultaneous segmentation and anatomical labeling of the cerebral vasculature. Med. Image Anal. 32, 201–215 (2016)

    Article  Google Scholar 

  7. Klohs, J., Baltes, C., Princz-Kranz, F., Ratering, D., Nitsch, R.M., Knuesel, I., Rudin, M.: Contrast-enhanced magnetic resonance microangiography reveals remodeling of the cerebral microvasculature in transgenic arca\(\beta \) mice. J. Neurosci. 32(5), 1705–1713 (2012)

    Article  Google Scholar 

  8. Batra, D., Yadollahpour, P., Guzman-Rivera, A., Shakhnarovich, G.: Diverse M-best solutions in markov random fields. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 1–16. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33715-4_1

    Chapter  Google Scholar 

  9. Kirillov, A., Savchynskyy, B., Schlesinger, D., Vetrov, D., Rother, C.: Inferring M-best diverse labelings in a single one. In: IEEE International Conference on Computer Vision (ICCV), pp. 1814–1822 (2015)

    Google Scholar 

  10. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  11. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT press (2009)

    Google Scholar 

  12. Papandreou, G., Yuille, A.L.: Perturb-and-MAP random fields: using discrete optimization to learn and sample from energy models. In: International Conference on Computer Vision 2011, pp. 193–200 (2011)

    Google Scholar 

  13. Tarlow, D., Adams, R.P., Zemel, R.S.: Randomized optimum models for structured prediction. In: Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, vol. 22, pp. 1221–1229 (2012)

    Google Scholar 

  14. Hazan, T., Jaakkola, T.: On the partition function and random maximum a-posteriori perturbations. In: Proceedings of the 29th International Conference on Machine Learning (ICML-12), pp. 991–998 (2012)

    Google Scholar 

  15. Hazan, T., Maji, S., Jaakkola, T.: On sampling from the gibbs distribution with random maximum a-posteriori perturbations. In: Advances in Neural Information Processing Systems, pp. 1268–1276 (2013)

    Google Scholar 

  16. Orabona, F., Hazan, T., Sarwate, A., Jaakkola, T.: On measure concentration of random maximum a-posteriori perturbations. In: International Conference on Machine Learning, pp. 432–440 (2014)

    Google Scholar 

  17. Gane, A., Hazan, T., Jaakkola, T.: Learning with maximum a-posteriori perturbation models. In: Artificial Intelligence and Statistics, pp. 247–256 (2014)

    Google Scholar 

  18. Alberts, E., Rempfler, M., Alber, G., Huber, T., Kirschke, J., Zimmer, C., Menze, B.H.: Uncertainty quantification in brain tumor segmentation using CRFs and random perturbation models. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 428–431 (2016)

    Google Scholar 

  19. Meier, R., Knecht, U., Jungo, A., Wiest, R., Reyes, M.: Perturb-and-MPM: quantifying segmentation uncertainty in dense multi-label CRFs. CoRR abs/1703.00312 (2017). http://arxiv.org/abs/1703.00312

  20. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2001)

    MATH  Google Scholar 

  21. Mehlhorn, K., Näher, S., Sanders, P.: Engineering DFS-based graph algorithms. CoRR abs/1703.10023 (2017). http://arxiv.org/abs/1703.10023

  22. Gumbel, E.J.: Statistical theory of extreme values and some practical applications: a series of lectures. No. 33, US Govt. Print. Office (1954)

    Google Scholar 

  23. Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  24. Sironi, A., Türetken, E., Lepetit, V., Fua, P.: Multiscale centerline detection. IEEE Trans. Pattern Anal. Mach. Intell. 1, 1–14 (2015)

    Google Scholar 

  25. Gurobi Optimization, Inc.: Gurobi Optimizer Reference Manual (2017). http://www.gurobi.com

Download references

Acknowledgements

With the support of the Technische Universität München – Institute for Advanced Study, funded by the German Excellence Initiative (and the European Union Seventh Framework Programme under grant agreement n\(^{\circ }\) 291763).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Rempfler .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 97 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rempfler, M., Andres, B., Menze, B.H. (2017). Uncertainty Estimation in Vascular Networks. In: Cardoso, M., et al. Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics. GRAIL MICGen MFCA 2017 2017 2017. Lecture Notes in Computer Science(), vol 10551. Springer, Cham. https://doi.org/10.1007/978-3-319-67675-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67675-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67674-6

  • Online ISBN: 978-3-319-67675-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics