Skip to main content

Combining Fog Architectures and Distributed Event-Based Systems for Mobile Sensor Location Certification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10586))

Abstract

Event filtering is of paramount importance in large-scale ur- ban sensing, where an enormous quantity of data is generated. Multiple criteria can be considered for filtering, location being one of the most valuable ones. Obtaining high-quality (trustworthy, accurate) location information helps to contextualize the event content and provides trust both on the source producer and on the publication itself. However, IoT-based urban services rely often on cloud architectures, which have no means to support location certification. To meet the need for location certification support in urban distributed event-based systems (DEBS), we propose three different fog architectures targeted at scenarios with mobile event producers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    To tolerate disconnections and overlapping.

References

  1. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.-M.: The many faces of publish/subscribe. ACM Comput. Surv. 35, 114–131 (2003)

    Article  Google Scholar 

  2. Antonic, A., Roankovic, K., Marjanovic, M., Pripuic, K., et al.: A mobile crowdsensing ecosystem enabled by a cloud-based publish/subscribe middleware. In: FiCloud 2014, pp. 107–114, IEEE (2014)

    Google Scholar 

  3. Lim, L., Marie, P., Conan, D., Chabridon, S., Desprats, T., Manzoor, A.: Enhancing context data distribution for the internet of things using QoC-awareness and attribute-based access control. Ann. Telecommun. 71(3), 121–132 (2016)

    Article  Google Scholar 

  4. Castro-Jul, F., Díaz-Redondo, R.P., Fernández-Vilas, A.: Have you also seen that? Collaborative alert assessment in ad hoc participatory sensing. In: García, C.R., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds.) UCAmI/IWAAL/AmIHEALTH -2016. LNCS, vol. 10070, pp. 125–130. Springer, Cham (2016). doi:10.1007/978-3-319-48799-1_15

    Chapter  Google Scholar 

  5. Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.: Participatory sensing. Center for Embedded Network Sensing (2006)

    Google Scholar 

  6. Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE Commun. Mag. 49(11), 32–39 (2011)

    Article  Google Scholar 

  7. Guo, B., Yu, Z., Zhou, X., Zhang, D.: From participatory sensing to mobile crowd sensing. In: PERCOM 2014, pp. 593–598. IEEE (2014)

    Google Scholar 

  8. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: MCC 2012, pp. 13–16. ACM (2012)

    Google Scholar 

  9. Yannuzzi, M., Milito, R., Serral-Gracià, R., Montero, D., Nemirovsky, M.: Key ingredients in an IoT recipe: fog computing, cloud computing, and more fog computing. In: CAMAD 2014, pp. 325–329. IEEE (2014)

    Google Scholar 

  10. Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B., Koldehofe, B.: Mobile fog: a programming model for large-scale applications on the internet of things. In: ACM SIGCOMM, MCC 2013, pp. 15–20. ACM (2013)

    Google Scholar 

  11. Munir, A., Kansakar, P., Khan, S.U.: IFCIoT: integrated fog cloud IoT architectural paradigm for future internet of things. CoRR (2017). http://arxiv.org/abs/org/abs/1701.08474

  12. Guerraoui, R., Rodrigues, L.: Introduction to Reliable Distributed Programming. Springer, Heidelberg (2006). doi:10.1007/3-540-28846-5

    MATH  Google Scholar 

  13. Chen, W.: Abortable consensus and its application to probabilistic atomic broadcast. Technical report MSR-TR-2006-135, Microsoft Research (2006)

    Google Scholar 

Download references

Acknowledgments

This work is funded by: the European Regional Development Fund (ERDF) and the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC), the Spanish Ministry of Economy and Competitiveness under the National Science Program (TEC2014-54335-C4-3-R) and a predoctoral grant financed by the Galician Regional Government (Consellería de Cultura, Educación e Ordenación Universitaria) and the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima Castro-Jul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Castro-Jul, F., Conan, D., Chabridon, S., Díaz Redondo, R.P., Fernández Vilas, A., Taconet, C. (2017). Combining Fog Architectures and Distributed Event-Based Systems for Mobile Sensor Location Certification. In: Ochoa, S., Singh, P., Bravo, J. (eds) Ubiquitous Computing and Ambient Intelligence. UCAmI 2017. Lecture Notes in Computer Science(), vol 10586. Springer, Cham. https://doi.org/10.1007/978-3-319-67585-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67585-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67584-8

  • Online ISBN: 978-3-319-67585-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics