Skip to main content

Probably Approximately Correct Learning of Regulatory Networks from Time-Series Data

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10545))

Included in the following conference series:

Abstract

Automating the process of model building from experimental data is a very desirable goal to palliate the lack of modellers for many applications. However, despite the spectacular progress of machine learning techniques in data analytics, classification, clustering and prediction making, learning dynamical models from data time-series is still challenging. In this paper we investigate the use of the Probably Approximately Correct (PAC) learning framework of Leslie Valiant as a method for the automated discovery of influence models of biochemical processes from Boolean and stochastic traces. We show that Thomas’ Boolean influence systems can be naturally represented by k-CNF formulae, and learned from time-series data with a number of Boolean activation samples per species quasi-linear in the precision of the learned model, and that positive Boolean influence systems can be represented by monotone DNF formulae and learned actively with both activation samples and oracle calls. We consider Boolean traces and Boolean abstractions of stochastic simulation traces, and study the space-time tradeoff there is between the diversity of initial states and the length of the time horizon, and its impact on the error bounds provided by the PAC learning algorithms. We evaluate the performance of this approach on a model of T-lymphocyte differentiation, with and without prior knowledge, and discuss its merits as well as its limitations with respect to realistic experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of reproducibility, the code used in this article is available at http://lifeware.inria.fr/wiki/software/#CMSB17.

  2. 2.

    More generally, the PAC learning protocol can discover partial vectors, but for the applications discussed in the current article it is enough to only consider total vectors.

  3. 3.

    http://lifeware.inria.fr/biocham4.

  4. 4.

    More precisely, in a well-formed influence system, f is assumed to be partially differentiable; \(x_i\in P\) if and only if \(\sigma = +\) (resp. −) and \({\partial {f}}/ {\partial x_i}(\varvec{x})>0\) (resp. \(<0\)) for some value \(\varvec{x}\in \mathbb {R}_+^n\); and \(x_i\in I\) if and only if \(\sigma = +\) (resp. −) and \({\partial {f}}/ {\partial x_i}(\varvec{x})<0\) (resp. \(>0\)) for some value \(\varvec{x}\in \mathbb {R}_+^n\).

  5. 5.

    Note that this function ignores the cases where \(v_i = 0\) and \({x_i}^-(v) =0\), or \(v_i=1\) and \({x_i}^+(v)=1\) which may create loops in non-terminal states in general influence systems.

References

  1. Angelopoulos, N., Muggleton, S.H.: Machine learning metabolic pathway descriptions using a probabilistic relational representation. Electron. Trans. Artif. Intell. 7(9), 1–11 (2002). also in Proceedings of Machine Intelligence

    Google Scholar 

  2. Angelopoulos, N., Muggleton, S.H.: Slps for probabilistic pathways: Modeling and parameter estimation. Technical Report TR 2002/12. Department of Computing, Imperial College, London, UK (2002)

    Google Scholar 

  3. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: A fruitful application of formal methods to biological regulatory networks: Extending Thomas’ asynchronous logical approach with temporal logic. J. Theor. Biol. 229(3), 339–347 (2004)

    Article  Google Scholar 

  4. Bryant, C.H., Muggleton, S.H., Oliver, S.G., Kell, D.B., Reiser, P.G.K., King, R.D.: Combining inductive logic programming, active learning and robotics to discover the function of genes. Electron. Trans. Artif. Intell. 6(12), 1–36 (2001)

    Google Scholar 

  5. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS, vol. 4220, pp. 68–94. Springer, Heidelberg (2006). doi:10.1007/11880646_4

    Chapter  Google Scholar 

  6. Chen, K.C., Calzone, L., Csikász-Nagy, A., Cross, F.R., Györffy, B., Val, J., Novàk, B., Tyson, J.J.: Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15(8), 3841–3862 (2004)

    Article  Google Scholar 

  7. Deng, K., Bourke, C., Scott, S.D., Sunderman, J., Zheng, Y.: Bandit-based algorithms for budgeted learning. In: ICDM (2007)

    Google Scholar 

  8. Deng, K., Zheng, Y., Bourke, C., Scott, S., Masciale, J.: New algorithms for budgeted learning. Mach. Learn. 90, 59–90 (2013)

    Article  MathSciNet  Google Scholar 

  9. Fages, F., Martinez, T., Rosenblueth, D.A., Soliman, S.: Influence systems vs Reaction systems. In: Bartocci, E., Lio, P., Paoletti, N. (eds.) CMSB 2016. LNCS, vol. 9859, pp. 98–115. Springer, Cham (2016). doi:10.1007/978-3-319-45177-0_7

    Chapter  Google Scholar 

  10. Fages, F., Soliman, S.: Abstract interpretation and types for systems biology. Theor. Comput. Sci. 403(1), 52–70 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72200-7_23

    Chapter  Google Scholar 

  12. Gebser, M., Schaub, T., Thiele, S., Usadel, B., Veber, P.: Detecting inconsistencies in large biological networks with answer set programming. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 130–144. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89982-2_19

    Chapter  Google Scholar 

  13. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chemis. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  14. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming. In: Proceedings of the on Future of Software Engineering, FOSE 2014, pp. 167–181, NY, USA. ACM, New York (2014)

    Google Scholar 

  15. Hill, S.M., et al.: Inferring causal molecular networks: empirical assessment through a community-based effort. Nat. Method. 1(4), 310–318 (2016)

    Article  Google Scholar 

  16. Llamosi, A., Mezine, A., dÁlché-Buc, F., Letort, V., Sebag, M.: Experimental design in dynamical system identification: a bandit-based active learning approach. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS, vol. 8725, pp. 306–321. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44851-9_20

    Google Scholar 

  17. Mendoza, L.: A network model for the control of the differentiation process in Th cells. Biosystems 84(2), 101–114 (2006)

    Article  Google Scholar 

  18. Meyer, P., Cokelaer, T., Chandran, D., Kim, K.H., Loh, P.R., Tucker, G., Lipson, M., Berger, B., Kreutz, C., Raue, A., Steiert, B., Timmer, J., Bilal, E., Sauro, H.M., Stolovitzky, G., Saez-Rodriguez, J.: Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach. BMC Syst. Biol. 8(1), 1–18 (2014)

    Article  Google Scholar 

  19. Muggleton, S.H.: Inverse entailment and progol. New Gener. Comput. 13, 245–286 (1995)

    Article  Google Scholar 

  20. Ostrowski, M., Paulevé, L., Schaub, T., Siegel, A., Guziolowski, C.: Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming. Biosystems 149, 139–153 (2016)

    Article  Google Scholar 

  21. Remy, E., Ruet, P., Mendoza, L., Thieffry, D., Chaouiya, C.: From logical regulatory graphs to standard petri nets: dynamical roles and functionality of feedback circuits. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS, vol. 4230, pp. 56–72. Springer, Heidelberg (2006). doi:10.1007/11905455_3

    Chapter  Google Scholar 

  22. Thomas, R.: Boolean formalisation of genetic control circuits. J. Theor. Biol. 42, 565–583 (1973)

    Article  Google Scholar 

  23. Thomas, R.: Regulatory networks seen as asynchronous automata : a logical description. J. Theor. Biol. 153, 1–23 (1991)

    Article  Google Scholar 

  24. Valiant, L.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

  25. Valiant, L.: Probably Approximately Correct. Basic Books (2013)

    Google Scholar 

  26. Videla, S., Konokotina, I., Alexopoulos, L.G., Saez-Rodriguez, J., Schaub, T., Siegel, A., Guziolowski, C.: Designing experiments to discriminate families of logic models. Front. Bioeng. Biotechnol. 3, 131 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the ANR project Hyclock.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Fages .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Carcano, A., Fages, F., Soliman, S. (2017). Probably Approximately Correct Learning of Regulatory Networks from Time-Series Data. In: Feret, J., Koeppl, H. (eds) Computational Methods in Systems Biology. CMSB 2017. Lecture Notes in Computer Science(), vol 10545. Springer, Cham. https://doi.org/10.1007/978-3-319-67471-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67471-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67470-4

  • Online ISBN: 978-3-319-67471-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics