Skip to main content

On the Solution of Linear Programming Problems in the Age of Big Data

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 753))

Abstract

The Big Data phenomenon has spawned large-scale linear programming problems. In many cases, these problems are non-stationary. In this paper, we describe a new scalable algorithm called NSLP for solving high-dimensional, non-stationary linear programming problems on modern cluster computing systems. The algorithm consists of two phases: Quest and Targeting. The Quest phase calculates a solution of the system of inequalities defining the constraint system of the linear programming problem under the condition of dynamic changes in input data. To this end, the apparatus of Fejer mappings is used. The Targeting phase forms a special system of points having the shape of an n-dimensional axisymmetric cross. The cross moves in the n-dimensional space in such a way that the solution of the linear programming problem is located all the time in an \(\varepsilon \)-vicinity of the central point of the cross.

The reported study has been partially supported by the RFBR according to research project No. 17-07-00352-a, by the Government of the Russian Federation according to Act 211 (contract No. 02.A03.21.0011) and by the Ministry of Education and Science of the Russian Federation (government order 2.7905.2017/8.9).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A single-valued map \(\varphi :{\mathbb {R}^n} \rightarrow {\mathbb {R}^n}\) is said to be fejerian relatively to a set M (or briefly, M-fejerian) if

    $$\begin{aligned} \begin{array}{l} \varphi \left( y \right) = y, \forall y \in M;\\ \left\| {\varphi (x) - y} \right\| < \left\| {x - y} \right\| , \forall x \notin M,\forall y \in M.\\ \end{array} \end{aligned}$$

    .

  2. 2.

    Here \(\mathrm {dist}(z,M) = \inf \left\{ {\left\| {z - x} \right\| :x \in M} \right\} \).

  3. 3.

    The symbol \( \div \) denotes integer division.

References

  1. Chung, W.: Applying large-scale linear programming in business analytics. In: Proceedings of the 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 1860–1864. IEEE (2015)

    Google Scholar 

  2. Tipi, H.: Solving super-size problems with optimization. Presentation at the meeting of the 2010 INFORMS Conference on O.R. Practice. Orlando, Florida, April 2010. http://nymetro.chapter.informs.org/prac_cor_pubs/06-10%20Horia%20Tipi%20SolvingLargeScaleXpress.pdf. Accessed 7 May 2017

  3. Gondzio, J., et al.: Solving large-scale optimization problems related to Bells Theorem. J. Comput. Appl. Math. 263, 392–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sodhi, M.S.: LP modeling for asset-liability management: a survey of choices and simplifications. Oper. Res. 53(2), 181–196 (2005)

    Article  MATH  Google Scholar 

  5. Dyshaev, M.M., Sokolinskaya, I.M.: Predstavlenie torgovykh signalov na osnove adaptivnoy skol’zyashchey sredney Kaufmana v vide sistemy lineynykh neravenstv [Representation of trading signals based Kaufman adaptive moving average as a system of linear inequalities]. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Vychislitel’naya matematika i informatika [Bull. South Ural State Univ. Ser. Comput. Math. Softw. Eng.] 2(4), 103–108 (2013)

    Google Scholar 

  6. Ananchenko, I.V., Musaev, A.A.: Torgovye roboty i upravlenie v khaoticheskikh sredakh: obzor i kriticheskiy analiz [Trading robots and management in chaotic environments: an overview and critical analysis]. In: Trudy SPIIRAN [SPIIRAS Proceedings], vol. 3, no. 34, pp. 178–203 (2014)

    Google Scholar 

  7. Radenkov, S.P., Gavryushin, S.S., Sokolyanskiy, V.V.: Avtomatizirovannyye torgovyye sistemy i ikh installyatsiya v rynochnuyu sredu (chast’ 1) [Automated trading systems and their installation in the market environment (Part 1)]. Voprosy ekonomicheskikh nauk [Probl. Econ.] 6(76), 70–74 (2015)

    Google Scholar 

  8. Dantzig, G.: Linear Programming and Extensions. Princeton University Press, Princeton (1998). 656 pp\({\rm {.}}\)

    MATH  Google Scholar 

  9. Klee, V., Minty, G.J.: How good is the simplex algorithm? In: Proceedings of the Third Symposium on Inequalities, University of California, Los Angeles, CA, pp. 159–175. Academic Press, New York-London, 1–9 September 1969. Dedicated to the Memory of Theodore S. Motzkin

    Google Scholar 

  10. Khachiyan, L.G.: Polynomial algorithms in linear programming. USSR Comput. Math. Math. Phys. 20(1), 53–72 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shor, N.Z.: Cut-off method with space extension in convex programming problems. Cybern. Syst. Anal. 13(1), 94–96 (1977)

    Google Scholar 

  12. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, pp. 302–311. ACM (1984)

    Google Scholar 

  13. Sokolinskaya, I.M., Sokolinskii, L.B.: Parallel algorithm for solving linear programming problem under conditions of incomplete data. Autom. Remote Control 71(7), 1452–1460 (2010)

    Article  MATH  Google Scholar 

  14. Rechkalov, T.V., Zymbler, M.L.: Accelerating medoids-based clustering with the Intel many integrated core architecture. In: Proceedings of the 9th International Conference on Application of Information and Communication Technologies, Rostov-on-Don, Russia, pp. 413–417. IEEE, 14–16 October 2015

    Google Scholar 

  15. Zymbler, M.: Best-match time series subsequence search on the intel many integrated core architecture. In: Morzy, T., Valduriez, P., Bellatreche, L. (eds.) ADBIS 2015. LNCS, vol. 9282, pp. 275–286. Springer, Cham (2015). doi:10.1007/978-3-319-23135-8_19

    Chapter  Google Scholar 

  16. Sokolinskaya, I.M., Sokolinsky, L.B.: Implementation of parallel pursuit algorithm for solving unstable linear programming problems. Bull. South Ural State Univ. Ser. Comput. Math. Softw. Eng. 5(2), 15–29 (2016). doi:10.14529/cmse160202. (in Russian)

    Google Scholar 

  17. Sokolinskaya, I., Sokolinsky, L.: Solving unstable linear programming problems of high dimension on cluster computing systems. In: Proceedings of the 1st Russian Conference on Supercomputing - Supercomputing Days 2015, Moscow, Russian Federation. CEUR Workshop Proceedings, vol. 1482, pp. 420–427. CEUR-WS.org, 28–29 September 2015

    Google Scholar 

  18. Eremin, I.I.: Fejerovskie metody dlya zadach linejnoj i vypukloj optimizatsii [Fejer Methods for Problems of Convex and Linear Optimization]. Publishing of the South Ural State University, Chelyabinsk (2009). 200 pp\(\rm {.}\)

    Google Scholar 

  19. Sokolinskaya, I., Sokolinsky, L.: Revised pursuit algorithm for solving non-stationary linear programming problems on modern computing clusters with manycore accelerators. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2016. CCIS, vol. 687, pp. 212–223. Springer, Cham (2016). doi:10.1007/978-3-319-55669-7_17

    Chapter  Google Scholar 

  20. Eremin, I.I.: Teoriya lineynoy optimizatsii [The theory of linear optimization]. Publishing House of the “Yekaterinburg”, Ekaterinburg (1999). 312 pp\({\rm {.}}\)

    Google Scholar 

  21. Thiagarajan, S.U., Congdon, C., Naik, S., Nguyen, L.Q.: Intel Xeon Phi coprocessor developers quick start guide. White Paper. Intel (2013). https://software.intel.com/sites/default/files/managed/ee/4e/intel-xeon-phi-coprocessor-quick-start-developers-guide.pdf. Accessed 7 May 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid B. Sokolinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sokolinskaya, I., Sokolinsky, L.B. (2017). On the Solution of Linear Programming Problems in the Age of Big Data. In: Sokolinsky, L., Zymbler, M. (eds) Parallel Computational Technologies. PCT 2017. Communications in Computer and Information Science, vol 753. Springer, Cham. https://doi.org/10.1007/978-3-319-67035-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67035-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67034-8

  • Online ISBN: 978-3-319-67035-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics