Skip to main content

Optimization of Drop Characteristics in a Carrier Cooled Gas Stream Using ANSYS and Globalizer Software Systems on the PNRPU High-Performance Cluster

  • Conference paper
  • First Online:
Parallel Computational Technologies (PCT 2017)

Abstract

We describe in this article the optimization calculations of spray droplets in a gas injected through a nozzle into a work area, as a part of a research icing on model objects in a small-size climatic wind tunnel. Calculations were performed in a three-dimensional formulation. It is assumed that the drop has some speed, temperature and diameter as it enters the gas flow, which has a specified speed and temperature, so that certain temperature limits are attained when it interacts with a remote obstruction. We determined the maximum gas flow temperature, which corresponds to the minimum of cooling energy consumption. The optimization was carried out using the Globalizer software (Lobachevsky State University of Nizhny Novgorod). Also, we could solve the integration issue between Globalizer and ANSYS Workbench 13.0. ANSYS was employed as a tool to calculate optimization criteria values, whereas Globalizer was used as an optimal parameter search tool. Calculations were performed on the PNRPU high-performance cluster (with a peak performance of 24 TFLOPS).

The study was supported by the grants of the Russian Science Foundation: project 14-19-00877 (V. Modorskii, S. Kalyulin and E. Shavrina, Sects. 1, 2 and 5) and project 16-11-10150 (K. Barkalov, V. Gergel, Sects. 3 and 4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Modorskii, V.Y., Shevelev, N.A.: Research of aerohydrodynamic and aeroelastic processes on PNRPU HPC system. In: Fomin, V. (ed.) ICMAR 2016, AIP Conference Proceedings, vol. 1770, art. no. 020001 (2016). doi:10.1063/1.4963924

  2. Shmakov, A.F., Modorskii, V.Y.: Energy conservation in cooling systems at metallurgical plants. Metallurgist 59(9–10), 882–886 (2016). doi:10.1007/s11015-016-0188-8

    Article  Google Scholar 

  3. Kalyulin, S.L., Modorskii, V.Y., Paduchev, A.P.: Numerical design of the rectifying lattices in a small-sized wind tunnel. In: Fomin, V. (ed.) ICMAR 2016, AIP Conference Proceedings, vol. 1770, art. no. 030110 (2016). doi:10.1063/1.4964052

  4. Afanasiev, V.A., Barsukov, V.S., Gofin, M.Y., Zakharov, Y.V., Strelchenko, A.N., Shalunov, N.P.: Experimental testing of spacecraft. MAI, Moscow (1994). (in Russian)

    Google Scholar 

  5. Goryachev, A.V., Mezhzil, E.K., Petrov, S.B., Syrov, V.A., Harlamov, A.V., Chivanov, S.V.: A way of ground testing objects of aircraft, subject to icing, and a device for its implementation. Patent RF, no. 2345345 (2007)

    Google Scholar 

  6. Klemenkov, G.P., Prihodko, Y.M., Puzyrev, L.N., Haritonov, A.M.: Modelling of aircraft icing processes in aeroclimatic tubes. Thermophys. Aeromeh. 15(4), 563–572 (2008). (in Russian)

    Google Scholar 

  7. Alekseenko, S.V., Prihodko, A.A.: Numerical simulation of icing cylinder and profile. Models review and calculation results. TsAGI Sci. J. 44(6), 25–57 (2013). (in Russian)

    Google Scholar 

  8. Prihodko, A.A., Alekseenko, S.V.: Numerical simulation of icing aerodynamic surfaces in the presence of large overcooled water drops. JETP Lett. 40(19), 75–82 (2014). (in Russian)

    Google Scholar 

  9. Hannat, R., Morency, F.: Numerical validation of conjugate heat transfer method for anti-/de-icing piccolo system. J. Aircr. 51(1), 104–116 (2014). doi:10.2514/1.c032078

    Article  Google Scholar 

  10. Villalpando, F., Reggio, M., Ilinca, A.: Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software. Energy 114, 1041–1052 (2016). doi:10.1016/j.energy.2016.08.047

    Article  Google Scholar 

  11. Lynch, F.T., Khodadoust, A.: Effects of ice accretions on aircraft aerodynamics. Prog. Aeosp. Sci. 37(8), 669–767 (2001). doi:10.1016/s0376-0421(01)00018-5

    Article  Google Scholar 

  12. Bragg, M.B., Broeren, A.P., Blumenthal, L.A.: Iced-airfoil aerodynamics. Prog. Aeosp. Sci. 41(5), 323–362 (2005). doi:10.4271/2003-01-2098

    Article  Google Scholar 

  13. Modorskii, V.Y., Sipatov, A.M., Babushkina, A.V., Kolodyazhny, D.Y., Nagorny, V.S.: Modeling technique for the process of liquid film disintegration. In: Fomin, V. (ed.) ICMAR 2016, AIP Conference Proceedings, vol. 1770, art. no. 030109 (2016). doi:10.1063/1.4964051

  14. Gaynutdinova, D.F., Modorsky, V.Y., Masich, G.F.: Infrastructure of data distributed processing in high-speed process research based on hydroelasticity tasks. In: Sloot, P. (ed.) YSC, Procedia Computer Science, vol. 66, pp. 556–563 (2015). doi:10.1016/j.procs.2015.11.063

  15. Modorskii, V.Y., Gaynutdinova, D.F., Gergel, V.P., Barkalov, K.A.: Optimization in design of scientific products for purposes of cavitation problems. In: Simos, T.E. (ed.) ICNAAM 2015, AIP Conference Proceedings, vol. 1738, art. no. 400013 (2016). doi:10.1063/1.4952201

  16. Modorskii, V.Y., Sokolkin, Y.V.: Dynamic behavior of a thick-walled cylinder under pressurization. Izv. Vyss. Uchebnykh Zaved. Aviats. Tek. 4, 14–16 (2002)

    Google Scholar 

  17. Kozlova, A.V., Modorskii, V.Y., Ponik, A.N.: Modeling of cooling processes in the variable section channel of a gas conduit. Rus. Aeronaut. 53(4), 401–407 (2010). doi:10.3103/s1068799810040057

    Article  Google Scholar 

  18. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints. Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000). doi:10.1007/978-1-4615-4677-1

    Book  MATH  Google Scholar 

  19. Barkalov, K.A., Strongin, R.G.: A global optimization technique with an adaptive order of checking for constraints. Comput. Math. Math. Phys. 42(9), 1289–1300 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Gergel, V.P., Strongin, R.G.: Parallel computing for globally optimal decision making on cluster systems. Future Gener. Comput. Syst. 21(5), 673–678 (2005). doi:10.1016/j.future.2004.05.007

    Article  Google Scholar 

  21. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013). doi:10.1007/978-1-4614-8042-6

    Book  MATH  Google Scholar 

  22. Barkalov, K., Ryabov, V., Sidorov, S.: Parallel scalable algorithms with mixed local-global strategy for global optimization problems. In: Hsu, C.-H., Malyshkin, V. (eds.) MTPP 2010. LNCS, vol. 6083, pp. 232–240. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14822-4_26

    Chapter  Google Scholar 

  23. Barkalov, K., Gergel, V., Lebedev, I.: Use of xeon phi coprocessor for solving global optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 307–318. Springer, Cham (2015). doi:10.1007/978-3-319-21909-7_31

    Chapter  Google Scholar 

  24. Barkalov, K., Gergel, V.: Parallel Global Optimization on GPU. J. Glob. Optim. 66(1), 3–20 (2016). doi:10.1007/s10898-016-0411-y

    Article  MathSciNet  MATH  Google Scholar 

  25. Barkalov, K., Gergel, V., Lebedev, I.: Solving global optimization problems on GPU cluster. In: Simos, T.E. (ed.) ICNAAM 2015, AIP Conference Proceedings, vol. 1738, art. no. 400006 (2016). doi:10.1063/1.4952194

  26. Gergel, V., Sidorov, S.: A two-level parallel global search algorithm for solution of computationally intensive multiextremal optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 505–515. Springer, Cham (2015). doi:10.1007/978-3-319-21909-7_49

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav L. Kalyulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kalyulin, S.L., Shavrina, E.V., Modorskii, V.Y., Barkalov, K.A., Gergel, V.P. (2017). Optimization of Drop Characteristics in a Carrier Cooled Gas Stream Using ANSYS and Globalizer Software Systems on the PNRPU High-Performance Cluster. In: Sokolinsky, L., Zymbler, M. (eds) Parallel Computational Technologies. PCT 2017. Communications in Computer and Information Science, vol 753. Springer, Cham. https://doi.org/10.1007/978-3-319-67035-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67035-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67034-8

  • Online ISBN: 978-3-319-67035-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics