Skip to main content

Adiabatic Invariants of Second Order Korteweg-de Vries Type Equation

  • Chapter
  • First Online:
Nonlinear Systems, Vol. 1

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

In this chapter we analyze the existence and forms of invariants of the extended Korteweg-de Vries equation (KdV2). This equation appears when the Euler equations for shallow water are extended to the second order, beyond Korteweg-de Vries (KdV). We show that contrary to KdV for which there is an infinite number of invariants, for KdV2 there exists only one, connected to mass (volume) conservation of the fluid. For KdV2 we found only so-called adiabatic invariants, that is, functions of the solutions which are constants neglecting terms of higher order than the order of the equation. In this chapter we present two methods for construction of such invariants. The first method, a direct one, consists in using constructions of higher KdV invariants and eliminating non-integrable terms in an approximate way. The second method introduces a near-identity transformation (NIT) which transforms KdV2 into equation (asymptotically equivalent) which is integrable. For the equation obtained by NIT, exact invariants exist, but they become approximate (adiabatic) when the inverse NIT transformation is applied and original variables are restored. Numerical tests of the exactness of adiabatic invariants for KdV2 in several cases of initial conditions are presented. These tests confirm that relative changes in these approximate invariants are small indeed. The relations of KdV invariants and KdV2 adiabatic invariants to conservation laws are discussed, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  2. Ablowitz., M.J., Segur, H.: Solitons and Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Google Scholar 

  3. Ali, A., Kalisch, H.: On the formulation of mass, momentum and energy conservation in the KdV equation. Acta Appl. Math. 133, 113–131 (2014)

    Article  MathSciNet  Google Scholar 

  4. Benjamin, B.T., Olver, P.J.: Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech. 125, 137–185 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bullough, R.K., Fordy, A.P., Manakov, S.V.: Adiabatic invariants theory of near-integrable systems with damping. Phys. Lett. A 91, 98–100 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  6. Burde, G.I., Sergyeyev, A.: Ordering of two small parameters in the shallow water wave problem. J. Phys. A: Math. Theor. 46, 075501 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. Dodd, R.: On the integrability of a system of coupled KdV equations. Phys. Lett. A 89, 168–170 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  8. Drazin., P.G., Johnson, R.S.: Solitons: An Introduction. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  9. Dullin, H.R., Gottwald, G.A., Holm, D.D.: An integrable shallow water equation with linear and nonlinear dispersion. Phys. Rev. Lett. 87, 194501 (2001)

    Article  ADS  Google Scholar 

  10. Dullin, H.R., Gottwald, G.A., Holm, D.D.: Camassa-holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves. Fluid Dyn. Res. 33, 73–95 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dullin, H.R., Gottwald, G.A., Holms, D.D.: On asymptotically equivalent shallow water equations. Physica D 190, 1–14 (2004)

    Google Scholar 

  12. Eckhaus, W., van Harten, A.: The inverse scattering method and the theory of solitons. An introduction. In: North-Holland Mathematics Studie, vol. 50. North Holland, Amsterdam (1981)

    Google Scholar 

  13. Fokas, A.S., Liu, Q.M.: Asymptotic integrability of water waves. Phys. Rev. Lett. 77, 2347–2351 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  ADS  Google Scholar 

  15. Grimshaw, R.: Internal solitary waves. In: Presented at the International Conference Progress in Nonlinear Science, Held in Nizhni Novogrod, July 2001. Dedicated to the 100-th Anniversary of Alexander A. Andronov (2001)

    Google Scholar 

  16. Grimshaw, R., Pelinovsky., E., Talipova, T.: Modelling internal solitary waves in the costal ocean. Surv. Geophys. 28, 273–298 (2007)

    Article  ADS  Google Scholar 

  17. He, Y.: New exact solutions for a higher order wave equation of KdV type using multiple G’/G-expansion methods. Adv. Math. Phys. 148132 (2014)

    Google Scholar 

  18. He, Y., Zhao, Y.M., Long, Y.: New exact solutions for a higher-order wave equation of KdV type using extended F-expansion method. Math. Prob. Eng. 128970 (2013)

    Google Scholar 

  19. Hiraoka, Y., Kodama, Y.: Normal forms for weakly dispersive wave equations. Lect. Notes Phys. 767, 193–196 (2009)

    Google Scholar 

  20. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004) (First published in Japanese (1992))

    Google Scholar 

  21. Infeld, E., Karczewska, A., Rowlands, G., Rozmej, P.: Exact cnoidal solutions of the extended KdV equation. Acta Phys. Polon. A 133, 1191–1199 (2018)

    Article  Google Scholar 

  22. Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos, 2nd edn. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  23. Karczewska, A., Rozmej, P., Infeld, E.: Shallow-water soliton dynamics beyond the Korteweg de Vries equation. Phys. Rev. E 90, 012907 (2014)

    Google Scholar 

  24. Karczewska, A., Rozmej, P., Infeld, E.: Energy invariant for shallow-water waves and the Korteweg-de Vries equation: doubts about the invariance of energy. Phys. Rev. E 92, 053202 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. Karczewska, A., Rozmej, P., Infeld, E., Rowlands, G.: Adiabatic invariants of the extended KdV equation. Phys. Lett. A 381, 270–275 (2017)

    Article  MathSciNet  Google Scholar 

  26. Karczewska, A., Rozmej, P., Rutkowski, L.: A new nonlinear equation in the shallow water wave problem. Phys. Scr. 89, 054026 (2014)

    Article  ADS  Google Scholar 

  27. Karczewska, A., Rozmej, P., Rutkowski, L.: A finite element method for extended KdV equations. Annal. UMCS Sectio AAA Phys. 70, 41–54 (2015)

    Google Scholar 

  28. Karczewska, A., Rozmej, P., Rutkowski, L.: Problems with energy of waves described by Korteweg-de Vries equation. Int. J. Appl. Math. Comp. Sci. 26, 555–567 (2016)

    Article  Google Scholar 

  29. Kodama, Y.: Normal forms for weakly dispersive wave equations. Phys. Lett. A 112, 193–196 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  30. Kodama, Y.: On integrable systems with higher order corrections. Phys. Lett. A 107, 245–249 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  31. Korteweg, D., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    Article  MathSciNet  Google Scholar 

  32. Luke, J.C.: A variational principle for a fluid with a free surface. J. Fluid Mech. 27, 395–397 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  33. Marchant, T.R., Smyth, N.F.: The extended Korteweg-de Vries equation and the resonant flow of a fluid over topography. J. Fluid Mech. 221, 263–288 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  34. Marchant, T.R., Smyth, N.F.: Soliton interaction for the extended Korteweg-de Vries equation. IMA J. Appl. Math. 56, 157–176 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  35. Miura, R.M., Gardner, C.S., Kruskal, M.D.: KdV equation and generalizations II. Existence of conservation laws and constants of motion. J. Math. Phys. 9, 1204–1209 (1968)

    Google Scholar 

  36. Newell, A.C.: Solitons in Mathematics and Physics. Society for Industrial and Applied Mathematics, Philadelphia, PAS, New York (1985)

    Book  Google Scholar 

  37. Olver, P.J.: Applications of Lie groups to differential equations. Springer, New York (1993)

    Book  Google Scholar 

  38. Osborne, A.R.: Nonlinear ocean waves and the inverse scattering transform. Elsevier, Academic Press, Amsterdam (2010)

    MATH  Google Scholar 

  39. Remoissenet, M.: Waves Called Solitons: Concepts and Experiments. Springer, Berlin (1999)

    Book  Google Scholar 

  40. Sergyeyev, A., Vitolo, R.F.: Symmetries and conservation laws for the Karczewska-Rozmej-Rutkowski-Infeld equation. Nonlinear Anal. Real World Appl. 32, 1–9 (2016)

    Article  MathSciNet  Google Scholar 

  41. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  42. Yang, J.: Dynamics of embedded solitons in the extended Korteweg-de Vries equations. Stud. Appl. Math. 106, 337–365 (2001)

    Article  MathSciNet  Google Scholar 

  43. Zabusky, N.J.: Solitons and bound states of the time-independent Schrödinger equation. Phys. Rev. 168, 124–128 (1968)

    Article  ADS  Google Scholar 

  44. Zhao, Y.M.: New exact solutions for a higher-order wave equation of KdV type using the multiple simplest equation method. J. Appl. Math. 848069 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Eryk Infeld and Prof. George Rowlands for inspiring discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Rozmej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rozmej, P., Karczewska, A. (2018). Adiabatic Invariants of Second Order Korteweg-de Vries Type Equation. In: Carmona, V., Cuevas-Maraver, J., Fernández-Sánchez, F., García- Medina, E. (eds) Nonlinear Systems, Vol. 1. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-66766-9_6

Download citation

Publish with us

Policies and ethics