Skip to main content

A Review on Some Bifurcations in the Lorenz System

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

In this chapter, we review some bifurcations exhibited by the classical Lorenz system, where the parameters can have any real value. Analytical results on the pitchfork, Hopf and Takens–Bogdanov bifurcations of the origin, as well as the Hopf bifurcation of the nontrivial equilibria, are summarized. These results serve as a guide for the numerical study that reveals other important organizing centers of the dynamics: Takens–Bogdanov bifurcations of periodic orbits, torus bifurcations and the resonances associated, homoclinic and heteroclinic connections with several degeneracies, etc. We also point out that the analysis of the Hopf-pitchfork and the triple-zero bifurcations of the origin cannot be performed with the usual tools and propose a way to carry out this study avoiding the structural singularities exhibited by the Lorenz system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alexeev, I.: Lorenz system in the thermodynamic modelling of leukaemia malignancy. Med. Hypotheses 102, 150–155 (2017)

    Article  Google Scholar 

  2. Algaba, A., Domínguez-Moreno, M.C., Merino, M., Rodríguez-Luis, A.J.: Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems. Nonlinear Dyn. 79, 885–902 (2015)

    Article  MathSciNet  Google Scholar 

  3. Algaba, A., Domínguez-Moreno, M.C., Merino, M., Rodríguez-Luis, A.J.: Takens–Bogdanov bifurcations of equilibria and periodic orbits in the Lorenz system. Commun. Nonlinear Sci. Numer. Simul. 30, 328–343 (2016)

    Article  MathSciNet  Google Scholar 

  4. Algaba, A., Fernández-Sánchez, F., Freire, E., Gamero, E., Rodríguez-Luis, A.J.: Oscillation-sliding in a modified van der Pol-Duffing electronic oscillator. J. Sound Vib. 249, 899–907 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  5. Algaba, A., Fernández-Sánchez, F., Freire, E., Merino, M., Rodríguez-Luis, A.J.: Nontransversal curves of T-points: a source of closed curves of global bifurcations. Phys. Lett. A 303, 204–211 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Analysis of the T-point-Hopf bifurcation with \(\mathbb{Z}_2\)-symmetry. Application to Chua’s equation. Int. J. Bifurc. Chaos 20, 979–993 (2010)

    Article  Google Scholar 

  7. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Comment on “Sil’nikov chaos of the Liu system” [Chaos 18, 013113 (2008)]. Chaos 21, 048101 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Structure of saddle-node and cusp bifurcations of periodic orbits near a non-transversal T-point. Nonlinear Dyn. 63, 455–476 (2011)

    Article  MathSciNet  Google Scholar 

  9. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Comment on “Existence of heteroclinic orbits of the Shil’nikov type in a 3D quadratic autonomous chaotic system” [J. Math. Anal. Appl. 315, 106–119 (2006)]. J. Math. Anal. Appl. 392, 99–101 (2012)

    Google Scholar 

  10. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Comment on “Heteroclinic orbits in Chen circuit with time delay” [Commun. Nonlinear Sci. Numer. Simulat. 15, 3058–3066 (2010)]. Commun. Nonlinear Sci. Numer. Simulat. 17, 2708–2710 (2012)

    Google Scholar 

  11. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Chen’s attractor exists if Lorenz repulsor exists: the Chen system is a special case of the Lorenz system. Chaos 23, 033108 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Comment on ‘Šilnikov-type orbits of Lorenz-family systems’ [Physica A 375, 438–446 (2007)]. Physica A 392, 4252–4257 (2013)

    Google Scholar 

  13. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: The Lü system is a particular case of the Lorenz system. Phys. Lett. A 377, 2771–2776 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Centers on center manifolds in the Lorenz, Chen and Lü systems. Commun. Nonlinear Sci. Numer. Simul. 19, 772–775 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Comment on “Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems” [Appl. Math. Comput. 218, 11859–11870 (2012)]. Appl. Math. Comput. 244, 49–56 (2014)

    Google Scholar 

  16. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Analysis of the T-point-Hopf bifurcation in the Lorenz system. Commun. Nonlinear Sci. Numer. Simul. 22, 676–691 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Algaba, A., Freire, E., Gamero, E., Rodríguez-Luis, A.J.: Analysis of Hopf and Takens–Bogdanov bifurcations in a modified van der Pol-Duffing oscillator. Nonlinear Dyn. 16, 369–404 (1998)

    Article  MathSciNet  Google Scholar 

  18. Algaba, A., Freire, E., Gamero, E., Rodríguez-Luis, A.J.: A three-parameter study of a degenerate case of the Hopf-pitchfork bifurcation. Nonlinearity 12, 1177–1206 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  19. Algaba, A., Freire, E., Gamero, E., Rodríguez-Luis, A.J.: On a codimension-three unfolding of the interaction of degenerate Hopf and pitchfork bifurcations. Int. J. Bifurc. Chaos 9, 1333–1362 (1999)

    Article  MathSciNet  Google Scholar 

  20. Algaba, A., Freire, E., Gamero, E., Rodríguez-Luis, A.J.: On the Takens–Bogdanov bifurcation in the Chua’s equation. IEICE T. Fund. Electr. E82-A, 1722–1728 (1999)

    Google Scholar 

  21. Algaba, A., Freire, E., Gamero, E., Rodríguez-Luis, A.J.: A tame degenerate Hopf-pitchfork bifurcation in a modified van der Pol-Duffing oscillator. Nonlinear Dyn. 22, 249–269 (2000)

    Article  MathSciNet  Google Scholar 

  22. Algaba, A., Freire, E., Gamero, E., Rodríguez-Luis, A.J.: Resonances of periodic orbits in Rössler system in presence of a triple-zero bifurcation. Int. J. Bifurc. Chaos 17, 1997–2008 (2007)

    Article  Google Scholar 

  23. Algaba, A., Gamero, E., García, C., Merino, M.: A degenerate Hopf-saddle-node bifurcation analysis in a family of electronic circuits. Nonlinear Dyn. 48, 55–76 (2007)

    Article  MathSciNet  Google Scholar 

  24. Algaba, A., Gamero, E., Merino, M., Rodríguez-Luis, A.J.: Resonances of periodic orbits in the Lorenz system. Nonlinear Dyn. 84, 2111–2136 (2016)

    Article  MathSciNet  Google Scholar 

  25. Algaba, A., Merino, M., Fernández-Sánchez, F., Rodríguez-Luis, A.J.: Closed curves of global bifurcations in Chua’s equation: a mechanism for their formation. Int. J. Bifurc. Chaos 13, 609–616 (2003)

    Article  MathSciNet  Google Scholar 

  26. Algaba, A., Merino, M., Fernández-Sánchez, F., Rodríguez-Luis, A.J.: Open-to-closed curves of saddle-node bifurcations of periodic orbits near a nontransversal T-point in Chua’s equation. Int. J. Bifurc. Chaos 16, 2637–2647 (2006)

    Article  MathSciNet  Google Scholar 

  27. Algaba, A., Merino, M., Fernández-Sánchez, F., Rodríguez-Luis, A.J.: Hopf bifurcations and their degeneracies in Chua’s equation. Int. J. Bifurc. Chaos 21, 2749–2763 (2011)

    Article  MathSciNet  Google Scholar 

  28. Algaba, A., Merino, M., Freire, E., Gamero, E., Rodríguez-Luis, A.J.: On the Hopf-pitchfork bifurcation in the Chua’s equation. Int. J. Bifurc. Chaos 10, 291–305 (2000)

    Article  MathSciNet  Google Scholar 

  29. Algaba, A., Merino, M., Freire, E., Gamero, E., Rodríguez-Luis, A.J.: Some results on Chua’s equation near a triple-zero linear degeneracy. Int. J. Bifurc. Chaos 13, 583–608 (2003)

    Article  MathSciNet  Google Scholar 

  30. Algaba, A., Merino, M., García, C., Reyes, M.: Degenerate global bifurcations in a simple circuit. Int. J. Pure Appl. Math. 57, 265–278 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Algaba, A., Merino, M., Rodríguez-Luis, A.J.: Evolution of Arnold’s Tongues in a \(\mathbb{Z}_{2}\)-symmetric electronic circuit. IEICE T. Fund. Electr. E82-A, 1714–1721 (1999)

    Google Scholar 

  32. Algaba, A., Merino, M., Rodríguez-Luis, A.J.: Takens–Bogdanov bifurcations of periodic orbits and Arnold’s tongues in a three-dimensional electronic model. Int. J. Bifurc. Chaos 11, 513–531 (2001)

    Article  MathSciNet  Google Scholar 

  33. Algaba, A., Merino, M., Rodríguez-Luis, A.J.: Homoclinic connections near a Belyakov point in Chua’s equation. Int. J. Bifurc. Chaos 15, 1239–1252 (2005)

    Article  MathSciNet  Google Scholar 

  34. Algaba, A., Merino, M., Rodríguez-Luis, A.J.: Analysis of a Belyakov homoclinic connection with \(\mathbb{Z}_2\)-symmetry. Nonlinear Dyn. 69, 519–529 (2012)

    Article  Google Scholar 

  35. Algaba, A., Merino, M., Rodríguez-Luis, A.J.: Homoclinic interactions near a triple-zero degeneracy in Chua’s equation. Int. J. Bifurc. Chaos 22, 1250,129 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  36. Algaba, A., Merino, M., Rodríguez-Luis, A.J.: Superluminal periodic orbits in the Lorenz system. Commun. Nonlinear Sci. Numer. Simulat. 39, 220–232 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, New York (1983)

    Book  Google Scholar 

  38. Back, A., Guckenheimer, J., Myers, M.R., Wicklin, F.J., Worfolk, P.A.: DsTool: computer assisted exploration of dynamical systems. Notices Am. Math. Soc. 39, 303–309 (1992)

    Google Scholar 

  39. Barrio, R., Blesa, F., Serrano, S.: Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci. Phys. Rev. E 84, 035,201 (2011)

    Google Scholar 

  40. Barrio, R., Serrano, S.: Bounds for the chaotic region in the Lorenz model. Physica D 238, 1615–1624 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  41. Barrio, R., Shilnikov, A.L., Shilnikov, L.P.: Kneadings, symbolic dynamics and painting Lorenz chaos. Int. J. Bifurc. Chaos 22, 1230016 (2012)

    Article  MathSciNet  Google Scholar 

  42. Broer, H., Roussarie, R., Simó, C.: Invariant circles in the Bogdanov–Takens bifurcation for diffeomorphisms. Ergod. Theory Dyn. Syst. 16, 1147–1172 (1996)

    Article  MathSciNet  Google Scholar 

  43. Cao, J., Zhang, X.: Dynamics of the Lorenz system having an invariant algebraic surface. J. Math. Phys. 48, 1–13 (2007)

    Article  Google Scholar 

  44. Champneys, A.R., Kuznetsov, Y.A.: Numerical detection and continuation of codimension-two homoclinic bifurcations. Int. J. Bifurc. Chaos 4, 795–822 (1994)

    MathSciNet  MATH  Google Scholar 

  45. Champneys, A.R., Rodríguez-Luis, A.J.: The non-transverse Shil’nikov-Hopf bifurcation: uncoupling of homoclinic orbits and homoclinic tangencies. Physica D 128, 130–158 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  46. Chow, S., Deng, B., Fiedler, B.: Homoclinic bifurcation at resonant eigenvalues. J. Dyn. Differ. Equ. 2, 177–244 (1990)

    Article  MathSciNet  Google Scholar 

  47. Chow, S., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  48. Creaser, J.L., Krauskopf, B., Osinga, H.M.: \(\alpha \)-flips and T-points in the Lorenz system. Nonlinearity 28, R39–R65 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  49. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71, 65–68 (1993)

    Article  ADS  Google Scholar 

  50. De Witte, V., Della Rossa, F., Govaerts, W., Kuznetsov, Y.A.: Numerical periodic normalization for codim 2 bifurcations of limit cycles: computational formulas, numerical implementation, and examples. SIAM J. Appl. Dyn. Syst. 12, 722–788 (2013)

    Article  MathSciNet  Google Scholar 

  51. Devaney, R.L.: An Introduction to Chaotic Dynamics. Benjamin/Cummings, Menlo Park (1986)

    MATH  Google Scholar 

  52. Doedel, E.J., Champneys, A.R., Dercole, F., Fairgrieve, T., Kuznetsov, Y.A., Oldeman, B.E., Paffenroth, R., Sandstede, B., Wang, X., Zhang, C.: AUTO-07P: continuation and bifurcation software for ordinary differential equations (with HomCont). Technical report, Concordia University (2010)

    Google Scholar 

  53. Doedel, E.J., Freire, E., Gamero, E., Rodríguez-Luis, A.J.: An analytical and numerical study of a modified van der Pol oscillator. J. Sound Vib. 256, 755–771 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  54. Doedel, E.J., Krauskopf, B., Osinga, H.M.: Global bifurcations of the Lorenz manifold. Nonlinearity 19, 2947–2972 (2006)

    Article  MathSciNet  Google Scholar 

  55. Doedel, E.J., Krauskopf, B., Osinga, H.M.: Global invariant manifolds in the transition to preturbulence in the Lorenz system. Indag. Math. 22, 222–240 (2011)

    Article  MathSciNet  Google Scholar 

  56. Doedel, E.J., Krauskopf, B., Osinga, H.M.: Global organization of phase space in the transition to chaos in the Lorenz system. Nonlinearity 28, R113R139 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  57. Elgin, J.N., Molina-Garza, J.B.: Traveling wave solutions of the Maxwell-Bloch equations. Phys. Rev. A 35, 3986–3988 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  58. Fernández-Sánchez, F., Freire, E., Pizarro, L., Rodríguez-Luis, A.J.: A model for the analysis of the dynamical consequences of a nontransversal intersection of the two-dimensional manifolds involved in a T-point. Phys. Lett. A 320, 169–179 (2003)

    Article  ADS  Google Scholar 

  59. Fernández-Sánchez, F., Freire, E., Rodríguez-Luis, A.J.: Isolas, cusps and global bifurcations in an electronic oscillator. Dyn. Syst. 12, 319–336 (1997)

    Article  MathSciNet  Google Scholar 

  60. Fernández-Sánchez, F., Freire, E., Rodríguez-Luis, A.J.: T-points in a \(\mathbb{Z}_2\)-symmetric electronic oscillator. (I) Analysis. Nonlinear Dyn. 28, 53–69 (2002)

    Article  Google Scholar 

  61. Fernández-Sánchez, F., Freire, E., Rodríguez-Luis, A.J.: Bi-spiraling homoclinic curves around a T-point in Chua’s equation. Int. J. Bifurc. Chaos 14, 1789–1793 (2004)

    Article  MathSciNet  Google Scholar 

  62. Fernández-Sánchez, F., Freire, E., Rodríguez-Luis, A.J.: Analysis of the T-point-Hopf bifurcation. Physica D 237, 292–305 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  63. Freire, E., Gamero, E., Rodríguez-Luis, A.J., Algaba, A.: A note on the triple-zero linear degeneracy: normal forms, dynamical and bifurcation behaviors of an unfolding. Int. J. Bifurc. Chaos 12, 2799–2820 (2002)

    Article  MathSciNet  Google Scholar 

  64. Freire, E., Rodríguez-Luis, A.J.: Numerical bifurcation analysis of electronic circuits. In: Krauskopf, B., et al. (eds.) Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems, pp. 221–251. Springer, Dordrecht (2007)

    Chapter  Google Scholar 

  65. Freire, E., Rodríguez-Luis, A.J., Gamero, E., Ponce, E.: A case study for homoclinic chaos in an autonomous electronic circuit. A trip from Takens–Bogdanov to Hopf-Šil’nikov. Physica D 62, 230–253 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  66. Gamero, E., Freire, E., Ponce, E.: Normal forms for planar systems with nilpotent linear part. In: Seydel, R., et al. (eds.) Bifurcation and Chaos: Analysis, Algorithms, Applications, International Series of Numerical Mathematics, vol. 97, pp. 123–127. Birkhäuser, Basel (1991)

    Chapter  Google Scholar 

  67. Gamero, E., Freire, E., Rodríguez-Luis, A.J., Ponce, E., Algaba, A.: Hypernormal form calculation for triple-zero degeneracies. B. Belg. Math. Soc. Sim. 6, 357–368 (1999)

    MathSciNet  MATH  Google Scholar 

  68. Gelfreich, V.: Chaotic zone in the Bogdanov–Takens bifurcation for diffeomorphisms. In: Begehr, H.G.W., Gilbert, R.P., Wong, M.W. (eds.) International Society for Analysis, Applications and Computation, Analysis and Applications-ISAAC 2001, vol. 10, pp. 187–197. Kluwer Acad. Publ, Dordrecht (2003)

    Chapter  Google Scholar 

  69. Glendinning, P., Sparrow, C.: T-points: a codimension two heteroclinic bifurcation. J. Stat. Phys. 43, 479–488 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  70. Golubitsky, M., Langford, W.F.: Classification and unfoldings of degenerate Hopf bifurcations. J. Differ. Equ. 41, 375–415 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  71. Gorman, M., Widmann, P.J., Robbins, K.A.: Nonlinear dynamics of a convection loop: a quantitative comparison of experiment with theory. Physica D 19, 255–267 (1986)

    Article  ADS  Google Scholar 

  72. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  Google Scholar 

  73. Haken, H.: Analogy between higher instabilities in fluids and lasers. Phys. Lett. A 53, 77–78 (1975)

    Article  ADS  Google Scholar 

  74. Hale, J.K.: Ordinary Differential Equations. Krieger Publishing Company, Malabar (1980)

    MATH  Google Scholar 

  75. Hemati, N.: Strange attractors in brushless DC motors. IEEE T. Circuits-I 41, 40–45 (1994)

    Article  Google Scholar 

  76. Homburg, A.J., Sandstede, B.: Homoclinic and heteroclinic bifurcations in vector fields. In: Broer, H., et al. (eds.) Handbook of Dynamical Systems, vol. 3, pp. 379–524. Elsevier, Amsterdam (2010)

    Google Scholar 

  77. Knobloch, E.: Chaos in the segmented disc dynamo. Phys. Lett. A 82, 439–440 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  78. Knobloch, E., Proctor, M.R.E., Weiss, N.O.: Heteroclinic bifurcations in a simple model of double-diffusive convection. J. Fluid Mech. 239, 273–292 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  79. Kokubu, H., Roussarie, R.: Existence of a singularly degenerate heteroclinic cycle in the Lorenz system and its dynamical consequences: Part 1. J. Dyn. Differ. Equ. 16, 513–557 (2004)

    Article  Google Scholar 

  80. Krauskopf, B., Rousseau, C.: Codimension-three unfoldings of reflectionally symmetric planar vector fields. Nonlinearity 10, 1115–1150 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  81. Kulpa, W.: The Poincaré-Miranda theorem. Am. Math. Mon. 104, 545–550 (1997)

    MATH  Google Scholar 

  82. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (2004)

    Book  Google Scholar 

  83. Leonov, G.A., Kuznetsov, N.V., Korzhemanova, N.A., Kusakin, D.V.: Lyapunov dimension formula for the global attractor of the Lorenz system. Commun. Nonlinear Sci. Numer. Simul. 41, 84–103 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  84. Llibre, J., Messias, M., da Silva, P.R.: Global dynamics of the Lorenz system with invariant algebraic surfaces. Int. J. Bifurc. Chaos 20, 3137–3155 (2010)

    Article  Google Scholar 

  85. Llibre, J., Zhang, X.: Invariant algebraic surfaces of the Lorenz system. J. Math. Phys. 43, 1622–1645 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  86. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  ADS  Google Scholar 

  87. Messias, M.: Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system. J. Phys. A 42, 115,101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  88. Osinga, H.M., Krauskopf, B.: Visualizing the structure of chaos in the Lorenz system. Comput. Graph. 26, 815–823 (2002)

    Article  Google Scholar 

  89. Pade, J., Rauh, A., Tsarouhas, G.: Analytical investigation of the Hopf bifurcation in the Lorenz model. Phys. Lett. A 115, 93–96 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  90. Pasini, A., Pelino, V.: A unified view of Kolmogorov and Lorenz systems. Phys. Lett. A 275, 435–446 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  91. Pchelintsev, A.N.: Numerical and physical modeling of the dynamics of the Lorenz system. Numer. Anal. Appl. 7, 159–167 (2014)

    Article  Google Scholar 

  92. Peckman, B.B., Frouzakis, C.E., Kevrekidis, I.: Bananas and bananas splits: a parametric degeneracy in the Hopf bifurcation for maps. SIAM J. Math. Anal. 26, 190–217 (1995)

    Article  MathSciNet  Google Scholar 

  93. Poland, D.: Cooperative catalysis and chemical chaos: a chemical model for the Lorenz equations. Physica D 65, 86–99 (1993)

    Article  ADS  Google Scholar 

  94. Rodríguez-Luis, A.J., Freire, E., Ponce, E.: On a codimension 3 bifurcation arising in an autonomous electronic circuit. In: Seydel, R., et al. (eds.) Bifurcation and Chaos: Analysis, Algorithms, Applications, International Series of Numerical Mathematics, vol. 97, pp. 301–306. Birkhäuser, Basel (1991)

    Chapter  Google Scholar 

  95. Roschin, M.: Dangerous stability boundaries in the Lorenz model. Prikl. Mat. Mekh. 42, 950–952 (1978)

    MathSciNet  Google Scholar 

  96. Sieber, J., Krauskopf, B.: Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity. Nonlinearity 17, 85–103 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  97. Sparrow, C.: The Lorenz Equations. Springer, New York (1982)

    MATH  Google Scholar 

  98. Swinnerton-Dyer, P.: The invariant algebraic surfaces of the Lorenz system. Math. Proc. Camb. Philos. Soc. 132, 385–393 (2002)

    Article  MathSciNet  Google Scholar 

  99. Tsarouhas, G., Pade, J.: The Hopf bifurcation in the Lorenz by the 2-timing method model. Physica A 138, 505–517 (1986)

    Article  ADS  Google Scholar 

  100. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. 328, 1197–1202 (1999)

    Article  MathSciNet  Google Scholar 

  101. Wang, Q., Huang, W., Feng, J.: Multiple limit cycles and centers on center manifolds for Lorenz system. Appl. Math. Comput. 238, 281–288 (2014)

    MathSciNet  MATH  Google Scholar 

  102. Wiggins, S.: Introduction to Applied Dynamical Systems and Chaos. Springer, New York (2003)

    MATH  Google Scholar 

  103. Yajima, T., Nagahama, H.: Tangent bundle viewpoint of the Lorenz system and its chaotic behavior. Phys. Lett. A 374, 1315–1319 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  104. Zhou, T., Chen, G.: Classification of chaos in 3-D auto nomous quadratic systems-I. Basic framework and methods. Int. J. Bifurc. Chaos 16, 2459–2479 (2006)

    Article  Google Scholar 

  105. Zhou, T., Chen, G., Čelikovský, S.: Ši’lnikov chaos in the generalized Lorenz canonical form of dynamical systems. Nonlinear Dyn. 39, 319–334 (2005)

    Article  Google Scholar 

  106. Zhou, T., Tang, Y., Chen, G.: Chen’s attractor exists. Int. J. Bifurc. Chaos 14, 3167–3178 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Ministerio de Economía y Competitividad, Plan Nacional I+D+I co-financed with FEDER funds, in the frame of the project MTM2014-56272-C2, and by the Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía (FQM-276, TIC-0130 and P12-FQM-1658).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cinta Domínguez-Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Algaba, A., Domínguez-Moreno, M.C., Merino, M., Rodríguez-Luis, A.J. (2018). A Review on Some Bifurcations in the Lorenz System. In: Carmona, V., Cuevas-Maraver, J., Fernández-Sánchez, F., García- Medina, E. (eds) Nonlinear Systems, Vol. 1. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-66766-9_1

Download citation

Publish with us

Policies and ethics