Skip to main content

Reliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots

  • Conference paper
  • First Online:
Advances in Computing (CCC 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 735))

Included in the following conference series:

Abstract

Today’s autonomous robots are being used for complex tasks, including space exploration, military applications, and precision agriculture. As the complexity of control architectures increases, reliability of autonomous robots becomes more challenging to guarantee. This paper presents a hybrid control architecture, based on the Plan Execution Interchange Language (\(\text {PLEXIL}\)), for autonomy of wheeled robots running the Robot Operating System (\(\text {ROS}\)). \(\text {PLEXIL}\) is a synchronous reactive language developed by NASA for mission critical robotic systems, while \(\text {ROS}\) is one of the most popular frameworks for robotic middle-ware development. Given the safety-critical nature of spacecraft operations, \(\text {PLEXIL}\) operational semantics has been mathematically defined, and formal techniques and tools have been developed to automatically analyze plans written in this language. The hybrid control architecture proposed in this paper is showcased in a path tracking scenario using the Husky robot platform via a Gazebo simulation. Thanks to the architecture presented in this paper, all formal analysis techniques and tools currently available to \(\text {PLEXIL}\) are now available to build reliable plans for \(\text {ROS}\)-enabled wheeled robots.

Camilo Rocha—The first two authors have been supported in part by grant DII/C008/2016 funded by Escuela Colombiana de Ingeniería.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andres, B., Rajaratnam, D., Sabuncu, O., Schaub, T.: Integrating ASP into ROS for reasoning in robots. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS, vol. 9345, pp. 69–82. Springer, Cham (2015). doi:10.1007/978-3-319-23264-5_7

    Chapter  Google Scholar 

  2. Broenink, J., Brodskiy, Y., Dresscher, D., Stramigioli, S.: Robustness inembedded software for autonomous robots. Mikroniek 54, 38–45 (2014)

    Google Scholar 

  3. Cadavid, H.F., Chaparro, J.A.: Hardware and software architecture for plexil-based, simulation supported, robot automation. In: IEEE Colombian Conference on Robotics and Automation (CCRA), pp. 1–6. IEEE (2016)

    Google Scholar 

  4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework: How to Specify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  5. Dowek, G., Muñoz, C., Rocha, C.: Rewriting logic semantics of a plan execution language. Electron. Proc. Theoret. Comput. Sci. 18, 77–91 (2010)

    Article  Google Scholar 

  6. Estlin, T., Jonsson, A., Pasareanu, C., Simmons, R., Tso, K., Verma, V.: Plan Execution Interchange Language (PLEXIL). Technical report TM-2006-213483, NASA, April 2006

    Google Scholar 

  7. O. S. R. Foundation. GAZEBO: A 3D dynamic simulator. http://gazebosim.org. Accessed 19 May 2017

  8. O. S. R. Foundation. ROS: Robot operating system. http://wiki.ros.org. Accessed 19 May 2017

  9. O. S. R. Foundation. RViz: 3D visualization tool for ROS. http://wiki.ros.org/rviz. Accessed 19 May 2017

  10. Janssen, R., van Meijl, E., Di Marco, D., van de Molengraft, R., Steinbuch, M.: Integrating planning and execution for ros enabled service robots using hierarchical action representations. In: 2013 16th International Conference on Advanced Robotics (ICAR), pp. 1–7. IEEE (2013)

    Google Scholar 

  11. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 2149–2154, September 2004

    Google Scholar 

  12. Lundgren, M.: Path tracking for a miniature robot. Department of Computer Science, University of Umea, Masters (2003)

    Google Scholar 

  13. Medeiros, A.A.: A survey of control architectures for autonomous mobile robots. J. Braz. Comput. Soc. 4(3) (1998)

    Google Scholar 

  14. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci. 96(1), 73–155 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Muñoz, C.A., Dutle, A., Narkawicz, A., Upchurch, J.: Unmanned aircraft systems in the national airspace system: a formal methods perspective. SIGLOG News 3(3), 67–76 (2016)

    Google Scholar 

  16. Muñoz, P., R-Moreno, M.D., Castaño, B.: Integrating a PDDL-based planner and a PLEXIL-executor into the ptinto robot. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010. LNCS, vol. 6096, pp. 72–81. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13022-9_8

    Chapter  Google Scholar 

  17. Nakhaeinia, D., Tang, S.H., Noor, S.M., Motlagh, O.: A review of control architectures for autonomous navigation of mobile robots. Int. J. Phys. Sci. 6(2), 169–174 (2011)

    Google Scholar 

  18. Potop-Butucaru, D., de Simone, R., Talpin, J.-P.: The synchronous hypothesis and synchronous languages. In: The Embedded Systems Handbook, pp. 1–21 (2005)

    Google Scholar 

  19. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)

    Google Scholar 

  20. Robotics, C.: Husky-unmanned ground vehicle. Technical Specifications, Clearpath Robotics, Kitcener, Ontario, Canada (2013)

    Google Scholar 

  21. Rocha, C.: Symbolic Reachability Analysis for Rewrite Theories. Ph.D. thesis, University of Illinois, December 2012

    Google Scholar 

  22. Rocha, C., Cadavid, H., Muñoz, C., Siminiceanu, R.: A formal interactive verification environment for the plan execution interchange language. In: Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 343–357. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30729-4_24

    Chapter  Google Scholar 

  23. Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system analysis. J. Logic. Algebr. Methods Program. 86(1), 269–297 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rocha, C., Muñoz, C., Cadavid, H.: A graphical environment for the semantic validation of a plan execution language. In: Third IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT 2009), pp. 201–207. IEEE, July 2009

    Google Scholar 

  25. Rozier, K.Y.: Specification: the biggest bottleneck in formal methods and autonomy. In: Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp. 8–26. Springer, Cham (2016). doi:10.1007/978-3-319-48869-1_2

    Chapter  Google Scholar 

  26. Verma, V., Jonsson, A., Pasareanu, C., Iatauro, M.: Universal-executive and PLEXIL: engine and language for robust spacecraft control and operations. In: American Institute of Aeronautics and Astronautics SPACE Forum (Space 2006). American Institute of Aeronautics and Astronautics, September 2006

    Google Scholar 

  27. Zheltoukhov, A.A., Stankevich, L.A.: A survey of control architectures for autonomous mobile robots. In: 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 1094–1099. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cadavid, H., Pérez, A., Rocha, C. (2017). Reliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots. In: Solano, A., Ordoñez, H. (eds) Advances in Computing. CCC 2017. Communications in Computer and Information Science, vol 735. Springer, Cham. https://doi.org/10.1007/978-3-319-66562-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66562-7_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66561-0

  • Online ISBN: 978-3-319-66562-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics