Skip to main content

Complications of Robotic Oncologic Renal Surgery

  • Chapter
  • First Online:
Robotic Urology

Abstract

Radical (RN) or partial nephrectomy (PN) are standard treatment for renal masses, with partial nephrectomy pursued whenever feasible for small renal masses. Most recently, robotic partial nephrectomy (RPN) and robotic radical nephrectomy (RRN) have gained favor as they offer oncologic outcomes similar to their open surgical counter-part, but with benefits of less blood loss, quick recovery, less complications and similar functional outcomes (Nazemi et al., Int Braz J Urol 32:15–22, 2006; Park et al., Korean J Urol 53:519–23, 2012; Sterrett et al., World J Urol 25:193–8, 2007). In fact, RPN is the most common PN approach since 2012 and, currently, it is estimated that about 60% of PN in the USA are performed robotically. Nowadays, in centers with adequate expertise, indications for RPN are the same as for OPN; furthermore, contraindications for RPN are more surgeon- and patient-related, rather than tumor-related. As such, given adequate robotic expertise, in 2017, if a patient is deemed to be a candidate for OPN, he/she is also typically a candidate for RPN, thus delivering the considerable benefits of minimally invasive surgery. The number of RRN has also consistently increased and most recently, reports have shown safety and feasibility for RRN and robotic inferior vena cava (IVC) thrombectomy (RIVCT), as such, expanding the indications of the robotic approach (Abaza et al., Eur Urol Focus 2:601–7, 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Nazemi T, et al. Radical nephrectomy performed by open, laparoscopy with or without hand-assistance or robotic methods by the same surgeon produces comparable perioperative results. Int Braz J Urol. 2006;32(1):15–22.

    Article  PubMed  Google Scholar 

  2. Park JW, et al. Cost aspects of radical nephrectomy for the treatment of renal cell carcinoma in Korea: open, laparoscopic, robot-assisted laparoscopic, and video-assisted minilaparotomy surgeries. Korean J Urol. 2012;53(8):519–23.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sterrett S, et al. Major urological oncological surgeries can be performed using minimally invasive robotic or laparoscopic methods with similar early perioperative outcomes compared to conventional open methods. World J Urol. 2007;25(2):193–8.

    Article  PubMed  Google Scholar 

  4. Abaza R, Eun DD, Gallucci M, Gill IS, Menon M, Mottrie A, Shabsigh A. Robotic surgery for renal cell carcinoma with vena caval tumor thrombus. Eur Urol Focus. 2017;2(6):601–7.

    Article  Google Scholar 

  5. Bernhard JC, et al. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J Urol. 2016;34(3):337–45.

    Article  PubMed  Google Scholar 

  6. Ukimura O, Nakamoto M, Gill IS. Three-dimensional reconstruction of renovascular-tumor anatomy to facilitate zero-ischemia partial nephrectomy. Eur Urol. 2012;61(1):211–7.

    Article  PubMed  Google Scholar 

  7. Kutikov A, Uzzo RG. The R.E.N.A.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol. 2009;182(3):844–53.

    Article  PubMed  Google Scholar 

  8. Ficarra V, et al. Preoperative aspects and dimensions used for an anatomical (PADUA) classification of renal tumours in patients who are candidates for nephron-sparing surgery. Eur Urol. 2009;56(5):786–93.

    Article  PubMed  Google Scholar 

  9. Leslie S, et al. Renal tumor contact surface area: a novel parameter for predicting complexity and outcomes of partial nephrectomy. Eur Urol. 2014;66(5):884–93.

    Article  PubMed  Google Scholar 

  10. Simmons MN, et al. Kidney tumor location measurement using the C index method. J Urol. 2010;183(5):1708–13.

    Article  PubMed  Google Scholar 

  11. Davidiuk AJ, et al. Mayo adhesive probability score: an accurate image-based scoring system to predict adherent perinephric fat in partial nephrectomy. Eur Urol. 2014;66(6):1165–71.

    Article  PubMed  Google Scholar 

  12. Tomaszewski JJ, et al. Internal validation of the renal pelvic score: a novel marker of renal pelvic anatomy that predicts urine leak after partial nephrectomy. Urology. 2014;84(2):351–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Abreu AL, et al. Management of large median and lateral intravesical lobes during robot-assisted radical prostatectomy. J Endourol. 2013;27(11):1389–92.

    Article  PubMed  Google Scholar 

  14. Hassouna HA, Manikandan R. Hemostasis in laparoscopic renal surgery. Indian J Urol. 2012;28(1):3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Desai MM, et al. Robotic partial nephrectomy with superselective versus main artery clamping: a retrospective comparison. Eur Urol. 2014;66(4):713–9.

    Article  PubMed  Google Scholar 

  16. Gill IS, et al. Improved hemostasis during laparoscopic partial nephrectomy using gelatin matrix thrombin sealant. Urology. 2005;65(3):463–6.

    Article  PubMed  Google Scholar 

  17. Blunt LW Jr, et al. Repair of superior mesenteric artery ligation during left nephrectomy with a native renal vein patch. Urology. 2004;64(2):377–8.

    Article  PubMed  Google Scholar 

  18. Albani JM, Novick AC. Renal artery pseudoaneurysm after partial nephrectomy: three case reports and a literature review. Urology. 2003;62(2):227–31.

    Article  PubMed  Google Scholar 

  19. Jung S, et al. Risk factors for postoperative hemorrhage after partial nephrectomy. Korean J Urol. 2014;55(1):17–22.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tobis S, et al. Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J Urol. 2011;186(1):47–52.

    Article  PubMed  Google Scholar 

  21. Hung AJ, et al. “Trifecta” in partial nephrectomy. J Urol. 2013;189(1):36–42.

    Article  PubMed  Google Scholar 

  22. Bruner B, et al. Renal nephrometry score is associated with urine leak after partial nephrectomy. BJU Int. 2011;108(1):67–72.

    Article  PubMed  Google Scholar 

  23. Zargar H, et al. Urine leak in minimally invasive partial nephrectomy: analysis of risk factors and role of intraoperative ureteral catheterization. Int Braz J Urol. 2014;40(6):763–71.

    Article  PubMed  Google Scholar 

  24. Abbasi A, et al. Posterior lumbar vein off the retrohepatic inferior vena cava: a novel anatomical variant with surgical implications. J Urol. 2012;187(1):296–301.

    Article  PubMed  Google Scholar 

  25. Psutka SP, Leibovich BC. Management of inferior vena cava tumor thrombus in locally advanced renal cell carcinoma. Ther Adv Urol. 2015;7(4):216–29.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kundavaram C, et al. Advances in robotic vena cava tumor thrombectomy: intracaval balloon occlusion, patch grafting, and vena cavoscopy. Eur Urol. 2016;70(5):884–90.

    Article  PubMed  Google Scholar 

  27. Das S. Laparoscopic staging pelvic lymphadenectomy: extraperitoneal approach. Semin Surg Oncol. 1996;12(2):134–8.

    Article  CAS  PubMed  Google Scholar 

  28. Collard JM, et al. Conservative treatment of postsurgical lymphatic leaks with somatostatin-14. Chest. 2000;117(3):902–5.

    Article  CAS  PubMed  Google Scholar 

  29. Ng CS, et al. Retroperitoneoscopic surgery is not associated with increased carbon dioxide absorption. J Urol. 1999;162(4):1268–72.

    Article  CAS  PubMed  Google Scholar 

  30. Wolf JS Jr, Stoller ML. The physiology of laparoscopy: basic principles, complications and other considerations. J Urol. 1994;152(2 Pt 1):294–302.

    Article  PubMed  Google Scholar 

  31. Abreu SC, et al. Thoracic complications during urological laparoscopy. J Urol. 2004;171(4):1451–5.

    Article  PubMed  Google Scholar 

  32. Liu W, et al. Off-clamp versus complete hilar control partial nephrectomy for renal cell carcinoma: a systematic review and meta-analysis. J Endourol. 2014;28(5):567–76.

    Article  CAS  PubMed  Google Scholar 

  33. Gettman MT, et al. Robotic-assisted laparoscopic partial nephrectomy: technique and initial clinical experience with DaVinci robotic system. Urology. 2004;64(5):914–8.

    Article  PubMed  Google Scholar 

  34. Caruso RP, et al. Robot assisted laparoscopic partial nephrectomy: initial experience. J Urol. 2006;176(1):36–9.

    Article  PubMed  Google Scholar 

  35. Kaul S, et al. Da Vinci-assisted robotic partial nephrectomy: technique and results at a mean of 15 months of follow-up. Eur Urol. 2007;51(1): 186–91; discussion 191–2.

    Google Scholar 

  36. Aron M, et al. Robotic and laparoscopic partial nephrectomy: a matched-pair comparison from a high-volume centre. BJU Int. 2008;102(1):86–92.

    Article  PubMed  Google Scholar 

  37. Deane LA, et al. Robotic versus standard laparoscopic partial/wedge nephrectomy: a comparison of intraoperative and perioperative results from a single institution. J Endourol. 2008;22(5):947–52.

    Article  PubMed  Google Scholar 

  38. Rogers CG, et al. Robotic partial nephrectomy: A multi-institutional analysis. J Robot Surg. 2008;2(3):141–3.

    Article  CAS  PubMed  Google Scholar 

  39. Rogers CG, et al. Robotic partial nephrectomy for renal hilar tumors: a multi-institutional analysis. J Urol. 2008;180(6):2353–6; discussion 2356.

    Google Scholar 

  40. Wang AJ, Bhayani SB. Robotic partial nephrectomy versus laparoscopic partial nephrectomy for renal cell carcinoma: single-surgeon analysis of >100 consecutive procedures. Urology. 2009;73(2):306–10.

    Article  PubMed  Google Scholar 

  41. Michli EE, Parra RO. Robotic-assisted laparoscopic partial nephrectomy: initial clinical experience. Urology. 2009;73(2):302–5.

    Article  PubMed  Google Scholar 

  42. Ho H, et al. Robotic-assisted laparoscopic partial nephrectomy: surgical technique and clinical outcomes at 1 year. BJU Int. 2009;103(5):663–8.

    Article  PubMed  Google Scholar 

  43. Benway BM, Bhayani SB. Robot-assisted partial nephrectomy: evolution and recent advances. Curr Opin Urol. 2010;20(2):119–24.

    Article  PubMed  Google Scholar 

  44. Patel MN, et al. Robotic partial nephrectomy for renal tumors larger than 4 cm. Eur Urol. 2010;57(2):310–6.

    Article  PubMed  Google Scholar 

  45. Scoll BJ, et al. Robot-assisted partial nephrectomy: a large single-institutional experience. Urology. 2010;75(6):1328–34.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Petros F, et al. Multi-institutional analysis of robot-assisted partial nephrectomy for renal tumors >4 cm versus ≤4 cm in 445 consecutive patients. J Endourol. 2012;26(6):642–6.

    Article  PubMed  Google Scholar 

  47. Ficarra V, et al. Robot-assisted partial nephrectomy for renal tumors larger than 4 cm: results of a multicenter, international series. World J Urol. 2012;30(5):665–70.

    Article  PubMed  Google Scholar 

  48. Gupta GN, et al. Robot-assisted laparoscopic partial nephrectomy for tumors greater than 4 cm and high nephrometry score: feasibility, renal functional, and oncological outcomes with minimum 1 year follow-up. Urol Oncol. 2013;31(1):51–6.

    Article  PubMed  Google Scholar 

  49. Rogers C, et al. Robotic nephrectomy for the treatment of benign and malignant disease. BJU Int. 2008;102(11):1660–5.

    Article  PubMed  Google Scholar 

  50. Hemal AK, Kumar A. A prospective comparison of laparoscopic and robotic radical nephrectomy for T1-2N0M0 renal cell carcinoma. World J Urol. 2009;27(1):89–94.

    Article  PubMed  Google Scholar 

  51. Boger M, et al. Comparison of robot-assisted nephrectomy with laparoscopic and hand-assisted laparoscopic nephrectomy. JSLS. 2010;14(3):374–80.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lorenzo EIS, et al. Robotics applied in laparoscopic kidney surgery: the Yonsei University experience of 127 cases. Urology. 2011;77(1):114–8.

    Article  PubMed  Google Scholar 

  53. White MA, et al. Robotic laparoendoscopic single-site radical nephrectomy: surgical technique and comparative outcomes. Eur Urol. 2011;59(5):815–22.

    Article  PubMed  Google Scholar 

  54. Dogra PN, et al. Outcomes following robotic radical nephrectomy: a single-center experience. Urol Int. 2012;89(1):78–82.

    Article  PubMed  Google Scholar 

  55. Khanna R, et al. Single institution experience with robot-assisted laparoendoscopic single-site renal procedures. J Endourol. 2012;26(3):230–4.

    Article  PubMed  Google Scholar 

  56. Wang LH, et al. Robotic-assisted laparoscopic nephrectomy (right) combined with inferior vena caval thrombectomy for level II tumor thrombus: The first clinical case in China. Acad J Second Mil Univ. 2014;35(7):763–8.

    Article  CAS  Google Scholar 

  57. Gill IS, et al. Robotic Level III inferior vena cava tumor thrombectomy: initial series. J Urol. 2015;194(4):929–38.

    Article  PubMed  Google Scholar 

  58. Petros FG, Angell JE, Abaza R. Outcomes of robotic nephrectomy including highest-complexity cases: largest series to date and literature review. Urology. 2015;85(6):1352–8.

    Article  PubMed  Google Scholar 

  59. Abaza R, et al. Multi-institutional experience with robotic nephrectomy with inferior vena cava tumor thrombectomy. J Urol. 2016;195(4):865–71.

    Article  PubMed  Google Scholar 

  60. Davila HH, Storey RE, Rose MC. Robotic-assisted laparoscopic radical nephrectomy using the Da Vinci Si system: how to improve surgeon autonomy. Our step-by-step technique. J Robot Surg. 2016;10(3):285–8.

    Article  PubMed  Google Scholar 

  61. Helmers MR, et al. Robotic versus laparoscopic radical nephrectomy: comparative analysis and cost considerations. Can J Urol. 2016;23(5):8435–40.

    PubMed  Google Scholar 

  62. Abaza R. Initial series of robotic radical nephrectomy with vena caval tumor thrombectomy. Eur Urol. 2011;59(4):652–6.

    Article  PubMed  Google Scholar 

  63. Ball MW, et al. Robot-assisted radical nephrectomy with inferior vena cava tumor thrombectomy: technique and initial outcomes. Can J Urol. 2015;22(1):7666–70.

    PubMed  Google Scholar 

  64. Schmit GD, et al. Usefulness of R.E.N.A.L. nephrometry scoring system for predicting outcomes and complications of percutaneous ablation of 751 renal tumors. J Urol. 2013;189(1):30–5.

    Article  PubMed  Google Scholar 

  65. Chang X, et al. The comparison of R.E.N.A.L., PADUA and centrality index score in predicting perioperative outcomes and complications after laparoscopic radio frequency ablation of renal tumors. J Urol. 2015;194(4):897–902.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Luis de Castro Abreu M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Castro Abreu, A.L., Gill, T., Cacciamani, G. (2018). Complications of Robotic Oncologic Renal Surgery. In: John, H., Wiklund, P. (eds) Robotic Urology. Springer, Cham. https://doi.org/10.1007/978-3-319-65864-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65864-3_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65863-6

  • Online ISBN: 978-3-319-65864-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics