Skip to main content

Conic Abstractions for Hybrid Systems

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10419))

Abstract

Despite researchers’ efforts in the last couple of decades, reachability analysis is still a challenging problem even for linear hybrid systems. Among the existing approaches, the most practical ones are mainly based on bounded-time reachable set over-approximations. For the purpose of unbounded-time analysis, one important strategy is to abstract the original system and find an invariant for the abstraction. In this paper, we propose an approach to constructing a new kind of abstraction called conic abstraction for affine hybrid systems, and to computing reachable sets based on this abstraction. The essential feature of a conic abstraction is that it partitions the state space of a system into a set of convex polyhedral cones which is derived from a uniform conic partition of the derivative space. Such a set of polyhedral cones is able to cut all trajectories of the system into almost straight segments so that every segment of a reach pipe in a polyhedral cone tends to be straight as well, and hence can be over-approximated tightly by polyhedra using similar techniques as HyTech or PHAVer. In particular, for diagonalizable affine systems, our approach can guarantee to find an invariant for unbounded reachable sets, which is beyond the capability of bounded-time reachability analysis tools. We implemented the approach in a tool and experiments on benchmarks show that our approach is more powerful than SpaceEx and PHAVer in dealing with diagonalizable systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henzinger, T.: The theory of hybrid automata. In: Proceedings of IEEE Symposium on Logic in Computer Science, pp. 278–292 (1996)

    Google Scholar 

  2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_18

    Chapter  Google Scholar 

  4. Dang, T., Maler, O.: Reachability analysis via face lifting. In: Henzinger, T.A., Sastry, S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 96–109. Springer, Heidelberg (1998). doi:10.1007/3-540-64358-3_34

    Chapter  Google Scholar 

  5. Kloetzer, M., Belta, C.: Reachability analysis of multi-affine systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 348–362. Springer, Heidelberg (2006). doi:10.1007/11730637_27

    Chapter  Google Scholar 

  6. Prabhakar, P., Viswanathan, M.: A dynamic algorithm for approximate flow computations. In: HSCC, pp. 133–142 (2011)

    Google Scholar 

  7. Lal, R., Prabhakar, P.: Bounded error flowpipe computation of parameterized linear systems. In: 2015 International Conference on Embedded Software (EMSOFT 2015), Amsterdam, Netherlands, 4–9 October 2015, pp. 237–246 (2015)

    Google Scholar 

  8. Kong, H., Bogomolov, S., Schilling, C., Jiang, Y., Henzinger, T.A.: Safety verification of nonlinear hybrid systems based on invariant clusters. In: HSCC, ser. (HSCC 2017), pp. 163–172. ACM, New York (2017)

    Google Scholar 

  9. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager, F.W., Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999). doi:10.1007/3-540-48983-5_10

    Chapter  Google Scholar 

  10. Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analysis of piecewise-linear dynamical systems. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000). doi:10.1007/3-540-46430-1_6

    Chapter  Google Scholar 

  11. Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis: internal approximation. Syst. Contr. Lett. 41(3), 201–211 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 73–88. Springer, Heidelberg (2000). doi:10.1007/3-540-46430-1_10

    Chapter  Google Scholar 

  13. Stursberg, O., Krogh, B.H.: Efficient representation and computation of reachable sets for hybrid systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 482–497. Springer, Heidelberg (2003). doi:10.1007/3-540-36580-X_35

    Chapter  Google Scholar 

  14. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31954-2_19

    Chapter  Google Scholar 

  15. Girard, A., Guernic, C., Maler, O.: Efficient computation of reachable sets of linear time-invariant systems with inputs. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 257–271. Springer, Heidelberg (2006). doi:10.1007/11730637_21

    Chapter  Google Scholar 

  16. Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 540–554. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4_40

    Chapter  Google Scholar 

  17. Jiang, Y., Song, H., Wang, R., Gu, M., Sun, J., Sha, L.: Data-centered runtime verification of wireless medical cyber-physical system. IEEE Trans. Ind. Inform. PP(99), 1 (2016)

    Google Scholar 

  18. Jiang, Y., Zhang, H., Li, Z., Deng, Y., Song, X., Gu, M., Sun, J.: Design and optimization of multiclocked embedded systems using formal techniques. IEEE Trans. Ind. Electron. 62(2), 1270–1278 (2015)

    Article  Google Scholar 

  19. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997). doi:10.1007/3-540-63166-6_48

    Chapter  Google Scholar 

  20. Frehse, G.: Phaver: algorithmic verification of hybrid systems past hytech. Int. J. Softw. Tools Technol. Transfer 10(3), 263–279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Batt, G., Belta, C., Weiss, R.: Temporal logic analysis of gene networks under parameter uncertainty. Trans. Autom. Contr. 53(Special Issue), 215–229 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Alur, R., Dang, T., Ivančić, F.: Progress on reachability analysis of hybrid systems using predicate abstraction. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 4–19. Springer, Heidelberg (2003). doi:10.1007/3-540-36580-X_4

    Chapter  Google Scholar 

  23. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002). doi:10.1007/3-540-45873-5_36

    Chapter  Google Scholar 

  24. Tiwari, A.: Abstractions for hybrid systems. Formal Methods Syst. Des. 32(1), 57–83 (2008)

    Article  MATH  Google Scholar 

  25. Roohi, N., Prabhakar, P., Viswanathan, M.: Hybridization based CEGAR for hybrid automata with affine dynamics. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 752–769. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9_48

    Chapter  Google Scholar 

  26. Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for invariant generation for polynomial continuous systems. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 268–288. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49122-5_13

    Chapter  Google Scholar 

  27. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Informatica 43(7), 451–476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Henzinger, T., Wong-Toi, H.: Linear phase-portrait approximations for nonlinear hybrid systems. Hybrid Syst. III, 377–388 (1996)

    Google Scholar 

  29. Frehse, G., Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  30. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31954-2_17

    Chapter  Google Scholar 

  31. Doyen, L., Henzinger, T.A., Raskin, J.-F.: Automatic rectangular refinement of affine hybrid systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 144–161. Springer, Heidelberg (2005). doi:10.1007/11603009_13

    Chapter  Google Scholar 

  32. Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic press, Amsterdam (2012)

    MATH  Google Scholar 

  33. Kong, H., Bartocci, E., Bogomolov, S., Grosu, R., Henzinger, T.A., Jiang, Y., Schilling, C.: Discrete abstraction of multiaffine systems. In: Cinquemani, E., Donzé, A. (eds.) HSB 2016. LNCS, vol. 9957, pp. 128–144. Springer, Cham (2016). doi:10.1007/978-3-319-47151-8_9

    Google Scholar 

  34. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 25–41. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30579-8_2

    Chapter  Google Scholar 

  35. GLPK (GNU linear programming kit). www.gnu.org/software/glpk

  36. Frehse, G., Kateja, R., Le Guernic, C.: Flowpipe approximation and clustering in space-time. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, pp. 203–212. ACM (2013)

    Google Scholar 

  37. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24743-2_22

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award) and by the ARC project DP140104219 (Robust AI Planning for Hybrid Systems).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mirco Giacobbe or Hui Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bogomolov, S., Giacobbe, M., Henzinger, T.A., Kong, H. (2017). Conic Abstractions for Hybrid Systems. In: Abate, A., Geeraerts, G. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2017. Lecture Notes in Computer Science(), vol 10419. Springer, Cham. https://doi.org/10.1007/978-3-319-65765-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65765-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65764-6

  • Online ISBN: 978-3-319-65765-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics