Skip to main content

Anesthesia for Robotic Thoracic Surgery

  • Chapter
  • First Online:

Abstract

Minimally invasive surgery involving the thoracic cavity is on the rise. With the introduction of the da Vinci robot system more than 10 years ago, cardiac and thoracic operations have been performed.

The literature on this topic currently includes case reports or series of clinically prospective or retrospective observational reports with the use of robotic systems, involving the thoracic cavity (mediastinal mass resection, lobectomies, esophagectomies, mitral valve surgery, assisted endoscopic coronary artery bypass grafting and atrial septal defect repair).

The basic principles applied to minimally invasive surgery of the chest apply to robotic-assisted thoracic surgery. The combination of patient position management, of one-lung ventilation techniques and surgical manipulations after ventilation and perfusion from dependent and non-dependent or collapsed lung. The preferred method for lung isolation during robotic assisted thoracic surgery is the use of a left-sided double-lumen endotracheal tube because of the greater margin of safety and faster lung collapse. Visualization during robotic thoracic surgery may be enhanced by continuous intrathoracic carbon dioxide insufflation which may increase airway pressures and depress hemodynamic performance.

Patient positioning during robotic thoracic surgery represents a challenge for anesthesiologists each particular case might require specific patient position so the surgeon can gain enough space in the axilla for the robot arms and accessory port/instruments in thoracic surgery. Special attention should be given to avoid unnecessary stretching of the elevated arms because it can damage brachial plexus.

The success of robotic thoracic and cardiac surgery includes skills in lung isolation techniques, fiberoptic bronchoscopy techniques, the use of transesophageal echocardiography (cardiac cases) and clear understanding of the concept of robotic surgery and anesthesia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rea F, Marulli G, Bortolotti L, et al. Experience with the “da Vinci” robotic system for thymectomy in patients with myasthenia gravis. Ann Thorac Surg. 2006;8:455–9.

    Article  Google Scholar 

  2. Baraka A. Onset of neuromuscular block in myasthenic patients. Br J Anaesth. 1992;69:227–8.

    Article  CAS  Google Scholar 

  3. Abel M, Eisenkraft JB. Anesthetic implications of myasthenia gravis. Mt Sinai J Med. 2002;69:31–7.

    PubMed  Google Scholar 

  4. Kernstine KH. Preoperative preparation of the patient with myasthenia gravis. Thorac Surg Clin. 2005;15(2):287–95.

    Article  Google Scholar 

  5. Pandey R, Elakkumanan LB, Garg R, et al. Brachial plexus injury after robotic-assisted thoracoscopic thymectomy. J Cardiothorac Vasc Anesth. 2009;23:584–6.

    Article  Google Scholar 

  6. Bodner J, Wykypiel H, Greiner A, et al. Early experience with robot-assisted surgery for mediastinal masses. Ann Thorac Surg. 2004;78:259–65.

    Article  Google Scholar 

  7. Savitt MA, Gao G, Furnary AP, et al. Application of robotic-assisted techniques to the surgical evaluation and treatment of the anterior mediastinum. Ann Thorac Surg. 2005;79:450–5.

    Article  Google Scholar 

  8. Rückert JC, Ismail M, Swierzy M, et al. Thoracoscopic thymectomy with the da Vinci® robotic system for myasthenia gravis. Ann N Y Acad Sci. 2008;1132:329–235.

    Article  Google Scholar 

  9. Park BJ, Flores RM, Rusch VW. Robotic assistance for video-assisted thoracic surgical lobectomy: technique and initial results. J Thorac Cardiovasc Surg. 2006;131:54–9.

    Article  Google Scholar 

  10. Anderson CA, Hellan M, Falabella A, et al. Robotic-assisted lung resection for malignant disease. Innovations. 2007;2:254–8.

    PubMed  Google Scholar 

  11. Gharagozloo F, Margolis M, Tempesta B, et al. Robot-assisted lobectomy for early-stage lung cancer: report of 100 consecutive cases. Ann Thorac Surg. 2009;88:380–4.

    Article  Google Scholar 

  12. Nifong LW, Chitwood WR Jr. Challenges for the anesthesiologist: robotics? Anesth Analg. 2003;96:1–2.

    PubMed  Google Scholar 

  13. Campos JH. Update on tracheobronchial anatomy and flexible fiberoptic bronchoscopy in thoracic anesthesia. Curr Opin Anaesthesiol. 2009;22:4–10.

    Article  Google Scholar 

  14. Campos JH. Progress in lung separation. Thorac Surg Clin. 2005;15:71–83.

    Article  Google Scholar 

  15. Kernstine KH, DeArmond DT, Karimi M, et al. The robotic, 2-stage, 3-field esophagolymphadenectomy. J Thorac Cardiovasc Surg. 2004;127:1847–9.

    Article  Google Scholar 

  16. Kernstine KH, DeArmond DT, Shamoun DM, Campos JH. The first series of completely robotic esophagectomies with three-field lymphadenectomy: initial experience. Surg Endosc. 2007;21:2285–92.

    Article  CAS  Google Scholar 

  17. Bodner JC, Zitt M, Ott H, et al. Robotic-assisted thoracoscopic surgery (RATS) for benign and malignant esophageal tumors. Ann Thorac Surg. 2005;80:1202–6.

    Article  Google Scholar 

  18. Van Hillegersberg R, Boone J, Draaisma WA, et al. First experience with robot-assisted thoracoscopic esophagolymphadenectomy for esophageal cancer. Surg Endosc. 2006;20:1435–9.

    Article  Google Scholar 

  19. Kim DJ, Hyung WJ, Lee CY, et al. Thoracoscopic esophagectomy for esophageal cancer: Feasibility and safety of robotic assistance in the prone position. J Thorac Cardiovasc Surg. 2010;139:53–9.

    Article  Google Scholar 

  20. Wolfer RS, Krasna MJ, Hasnain JU, McLaughlin JS. Hemodynamic effects of carbon dioxide insufflation during thoracoscopy. Ann Thorac Surg. 1994;58:404–7.

    Article  CAS  Google Scholar 

  21. Vassiliades TA. The cardiopulmonary effects of single-lung ventilation and carbon dioxide insufflation during thoracoscopic internal mammary artery harvest. Heart Surg Forum. 2002;5:22–4.

    PubMed  Google Scholar 

  22. Tomescu D, Grigorescu B, Nitulescu R, et al. Hemodynamic changes induced by positive pressure capnothorax during thoracoscopic thymectomy. Chirurgia. 2007;102:263–70.

    PubMed  Google Scholar 

  23. Ohtsuka T, Nakajima J, Kotsuka Y, Takamoto S. Hemodynamic response to intrapleural insufflation with hemipulmonary collapse. Surg Endosc. 2001;15:1327–30.

    Article  CAS  Google Scholar 

  24. El-Dawlatly AA, Al-Dohayan A, Samarkandi A, et al. Right vs left side thoracoscopic sympathectomy: effects of carbon dioxide insufflation on haemodynamics. Ann Chir Gynaecol. 2001;90:206–8.

    CAS  PubMed  Google Scholar 

  25. El-Dawlatly AA, Al-Dohayan A, Abdel-Meguid ME, et al. Variations in dynamic lung compliance during endoscopic thoracic sympathectomy with carbon dioxide insufflation. Clin Auton Res. 2003;13(Suppl 1):I94–7.

    PubMed  Google Scholar 

  26. Robicsek F. Robotic cardiac surgery: time told! J Thorac Cardiovasc Surg. 2008;135:243–6.

    Article  Google Scholar 

  27. Tatooles AJ, Pappas PS, Gordon PJ, et al. Minimally invasive mitral valve repair using the da Vinci robotic system. Ann Thorac Surg. 2004;77:1978–82.

    Article  Google Scholar 

  28. Nifong LW, Chitwood WR, Pappas PS, et al. Robotic mitral valve surgery: a United States multicenter trial. J Thorac Cardiovasc Surg. 2005;129:1395–404.

    Article  Google Scholar 

  29. Chitwood WR Jr, Rodriguez E, Chu MW, et al. Robotic mitral valve repairs in 300 patients: a single-center experience. J Thorac Cardiovasc Surg. 2008;136:436–41.

    Article  Google Scholar 

  30. Subramanian VA, Patel NU, Patel NC, et al. Robotic assisted multivessel minimally invasive direct coronary artery bypass with port-access stabilization and cardiac positioning: paving the way for outpatient coronary surgery? Ann Thorac Surg. 2005;79:1590–6.

    Article  Google Scholar 

  31. Srivastava S, Gadasalli S, Agusala M, et al. Use of bilateral internal thoracic arteries in CABG through lateral thoracotomy with robotic assistance in 150 patients. Ann Thorac Surg. 2006;81:800–6.

    Article  Google Scholar 

  32. Argenziano M, Katz M, Bonatti J, et al. Results of the prospective multicenter trial of robotically assisted totally endoscopic coronary artery bypass grafting. Ann Thorac Surg. 2006;81:1666–74.

    Article  Google Scholar 

  33. Argenziano M, Oz MC, Kohmoto T, et al. Totally endoscopic atrial septal defect repair with robotic assistance. Circulation. 2003;108(Suppl 1):II191–4.

    PubMed  Google Scholar 

  34. Bonaros N, Schachner T, Oehlinger A, et al. Robotically assisted totally endoscopic atrial septal defect repair: insights from operative times, learning curves, and clinical outcome. Ann Thorac Surg. 2006;82:687–93.

    Article  Google Scholar 

  35. Morgan J, Peacock J, Kohmoto T, et al. Robotic techniques improve quality of life in patients undergoing atrial septal defect repair. Ann Thorac Surg. 2004;77:1328–33.

    Article  Google Scholar 

  36. Murphy DA, Miller JS, Langford DA. Robot-assisted endoscopic excision of left atrial myxomas. J Thorac Cardiovasc Surg. 2005;130:596–7.

    Article  Google Scholar 

  37. Woo YJ, Grand TJ, Weiss SJ. Robotic resection of an aortic valve papillary fibroelastoma. Ann Thorac Surg. 2005;80:1100–2.

    Article  Google Scholar 

  38. Jansens JL, Jottrand M, Preumont N, et al. Robotic-enhanced biventricular resynchronization: an alternative to endovenous cardiac resynchronization therapy in chronic heart failure. Ann Thorac Surg. 2003;76:413–7.

    Article  Google Scholar 

  39. Loulmet DF, Patel NC, Patel NU, et al. First robotic endoscopic epicardial isolation of the pulmonary veins with microwave energy in a patient in chronic atrial fibrillation. Ann Thorac Surg. 2004;78:24–5.

    Article  Google Scholar 

  40. Lehmann A, Zeitler C, Lang J, et al. A comparison of the Arndt endobronchial blocker with a double lumen tube in robotic cardiac surgery. Anasthesiol Intensivmed Notfallmed Schmerzther. 2004;39:353–9.

    Article  CAS  Google Scholar 

  41. Aybek T, Dogan S, Risteski PS, et al. Two hundred forty minimally invasive mitral operations through right minithoracotomy. Ann Thorac Surg. 2006;81:1618–24.

    Article  Google Scholar 

  42. Rodriguez E, Kypson AP, Moten SC, et al. Robotic mitral surgery at East Carolina University: a 6 year experience. Int J Med Robot. 2006;2:211–5.

    Article  Google Scholar 

  43. Hatton KW, Kilinski LC, Ramaiah C, et al. Multiple failed external defibrillation attempts during robot-assisted internal mammary harvest for myocardial revascularization. Anesth Analg. 2006;103:1113–4.

    Article  Google Scholar 

  44. Sorrell VL, Rajeev AG, Nifong LW, et al. Intraoperative transesophageal echocardiography with a special focus on a patient undergoing advanced robotic-assisted procedures. Echocardiography. 2002;19:583–7.

    Article  Google Scholar 

  45. LeVan P, Stevenson J, Develi N, et al. Cardiovascular collapse after femoral venous cannula placement for robotic-assisted mitral valve repair and patent foramen ovale closure. J Cardiothorac Vasc Anesth. 2008;22:590–1.

    Article  Google Scholar 

  46. Autschbach R, Onnasch JF, Falk V, et al. The Leipzig experience with robotic valve surgery. J Card Surg. 2000;15:82–7.

    Article  CAS  Google Scholar 

  47. Reichenspurner H, Detter C, Deuse T, et al. Video and robotic-assisted minimally invasive mitral valve surgery: a comparison of the Port-Access and transthoracic clamp techniques. Ann Thorac Surg. 2005;79:485–90.

    Article  Google Scholar 

  48. Jones BA, Krueger S, Howell D, et al. Robotic mitral valve repair: a community hospital experience. Tex Heart Inst J. 2005;32:143–6.

    PubMed  PubMed Central  Google Scholar 

  49. Kappert U, Tugtekin SM, Cichon R, et al. Robotic totally endoscopic coronary artery bypass: a word of caution implicated by a five-year follow-up. J Thorac Cardiovasc Surg. 2008;135:857–62.

    Article  Google Scholar 

  50. Ishikawa N, Watanabe G, Iino K, et al. Robotic internal thoracic artery harvesting. Surg Today. 2007;37:944–6.

    Article  Google Scholar 

  51. Mierdl S, Byhahn C, Lischke V, et al. Segmental myocardial wall motion during minimally invasive coronary artery bypass grafting using open and endoscopic surgical techniques. Anesth Analg. 2005;100:306–14.

    Article  CAS  Google Scholar 

  52. Caynak B, Sagbas E, Onan B, et al. Robotically enhanced coronary artery bypass grafting: the feasibility and clinical outcome of 196 procedures. Int J Med Robot. 2009;5:170–7.

    Article  Google Scholar 

  53. Damiano RJ Jr, Tabaie HA, Mack MJ, et al. Initial prospective multicenter clinical trial of robotically-assisted coronary artery bypass grafting. Ann Thorac Surg. 2001;72:1263–8.

    Article  Google Scholar 

  54. Torracca L, Ismeno G, Alfieri O. Totally endoscopic computer-enhanced atrial septal defect closure in six patients. Ann Thorac Surg. 2001;72:1354–7.

    Article  CAS  Google Scholar 

  55. Gao C, Yang M, Wang G, et al. Totally robotic resection of myxoma and atrial septal defect repair. Interact Cardiovasc Thorac Surg. 2008;7:947–50.

    Article  Google Scholar 

  56. Tamim M, Omrani M, Tash A, et al. Carbon dioxide embolism during endoscopic vein harvesting. Interact Cardiovasc Thorac Surg. 2008;7:659–60.

    Article  Google Scholar 

  57. Cheema FH, Weisberg JS, Khalid I, et al. Warm beating heart, robotic endoscopic Cox-cryomaze: an approach for treating atrial fibrillation. Ann Thorac Surg. 2009;87:966–8.

    Article  Google Scholar 

  58. Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346:1845–53.

    Article  Google Scholar 

  59. Derose JJ Jr, Belsley S, Swistel DG, et al. Robotically assisted left ventricular epicardial lead implantation for biventricular pacing: the posterior approach. Ann Thorac Surg. 2004;77:1472–4.

    Article  Google Scholar 

  60. Royse CF. High thoracic epidural anaesthesia for cardiac surgery. Curr Opin Anaesthesiol. 2009;22:84–7.

    Article  Google Scholar 

  61. Mehta Y, Arora D, Sharma KK, et al. Comparison of continuous thoracic epidural and paravertebral block for postoperative analgesia after robotic-assisted coronary artery bypass surgery. Ann Card Anaesth. 2008;11:91–6.

    Article  Google Scholar 

  62. Folliguet T, Vanhuyse F, Constantino X, et al. Mitral valve repair robotic versus sternotomy. Eur J Cardiothorac Surg. 2006;29:362–6.

    Article  Google Scholar 

  63. Campos JH. An update on robotic thoracic surgery and anesthesia. Curr Opin Anaesthesiol. 2010;23:1–6.

    Article  Google Scholar 

  64. Bolton JWR, Connally JE. Results of a phase one study on robotically assisted myocardial revascularization on the beating heart. Ann Thorac Surg. 2004;78:154–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier H. Campos M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campos, J.H., Ueda, K., Falabella, A. (2018). Anesthesia for Robotic Thoracic Surgery. In: Kernstine, K. (eds) Atlas of Robotic Thoracic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-64508-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64508-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64506-3

  • Online ISBN: 978-3-319-64508-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics