Skip to main content

Anticoagulant Rodenticide Toxicity to Non-target Wildlife Under Controlled Exposure Conditions

  • Chapter
  • First Online:
Anticoagulant Rodenticides and Wildlife

Part of the book series: Emerging Topics in Ecotoxicology ((ETEP,volume 5))

Abstract

Much of our understanding of anticoagulant rodenticide toxicity to non-target wildlife has been derived from molecular through whole animal research and registration studies in domesticated birds and mammals, and to a lesser degree from trials with captive wildlife. Using these data, an adverse outcome pathway identifying molecular initiating and anchoring events (inhibition of vitamin K epoxide reductase, failure to activate clotting factors), and established and plausible linkages (coagulopathy, hemorrhage, anemia, reduced fitness) associated with toxicity, is presented. Controlled exposure studies have demonstrated that second-generation anticoagulant rodenticides (e.g., brodifacoum) are more toxic than first- and intermediate-generation compounds (e.g., warfarin, diphacinone), however the difference in potency is diminished when first- and intermediate-generation compounds are administered on multiple days. Differences in species sensitivity are inconsistent among compounds. Numerous studies have compared mortality rate of predators fed prey or tissue containing anticoagulant rodenticides. In secondary exposure studies in birds, brodifacoum appears to pose the greatest risk, with bromadiolone, difenacoum, flocoumafen and difethialone being less hazardous than brodifacoum, and warfarin, coumatetralyl, coumafuryl, chlorophacinone and diphacinone being even less hazardous. In contrast, substantial mortality was noted in secondary exposure studies in mammals ingesting prey or tissue diets containing either second- or intermediate-generation compounds. Sublethal responses (e.g., prolonged clotting time, reduced hematocrit and anemia) have been used to study the sequelae of anticoagulant intoxication, and to some degree in the establishment of toxicity thresholds or toxicity reference values. Surprisingly few studies have undertaken histopathological evaluations to identify cellular lesions and hemorrhage associated with anticoagulant rodenticide exposure in non-target wildlife. Ecological risk assessments of anticoagulant rodenticides would be improved with additional data on (i) interspecific differences in sensitivity, particularly for understudied taxa, (ii) sublethal effects unrelated to coagulopathy, (iii) responses to mixtures and sequential exposures, and (iv) the role of vitamin K status on toxicity, and significance of inclusion of supplemental vitamin K or menadione (provitamin) in the diet of test organisms. A more complete understanding of the toxicity of anticoagulant rodenticides in non-target wildlife would enable regulators and natural resource managers to better predict and even mitigate risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen DG, Waters MD (2013) Reducing, refining and replacing the use of animals in toxicity testing. Royal Society of Chemistry, Cambridge, 362 pp

    Book  Google Scholar 

  • Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP, Kahn SFS, May HT, Samuelson KM, Muhlestein JB, Carlquist JF (2007) Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 116:2563–2570

    Google Scholar 

  • Andrew DJ (2014) Acute systemic toxicity: oral, dermal and inhalation exposures. In: Allen DG, Waters MD (eds) Reducing, refining and replacing the use of animals in toxicity testing. Royal Society of Chemistry, Cambridge, pp 187–214

    Google Scholar 

  • Ashton AD, Jackson WB, Peters H (1986) Comparative evaluation of LD50 values for various anticoagulant rodenticides. Trop Pest Manag 32:187–197

    Google Scholar 

  • Askham LR, Poché RM (1992) Biodeterioration of chlorophacinone in voles, hawks and an owl. Mammalia 56:145–150

    Article  Google Scholar 

  • Aulerich RJ, Ringer RK, Safronoff J (1987) Primary and secondary toxicity of warfarin, sodium monofluoroacetate, and methyl parathion in mink. Arch Environ Contam Toxicol 16:357–366

    Article  CAS  Google Scholar 

  • Awkerman JA, Raimondo S, Barron MG (2008) Development of species sensitivity distributions for wildlife using interspecies toxicity correlation models. Environ Sci Technol 46:1–18

    Google Scholar 

  • Bach AU, Anderson SA, Foley AL, Willams EC, Suttie JW (1996) Assessment of vitamin K status in human subjects administered “minidose” warfarin. Am J Clin Nutr 64:894–902

    CAS  Google Scholar 

  • Bailey C, Fisher P, Eason CT (2005) Assessing anticoagulation resistance in rats and coagulation effects in birds using small-volume blood samples. Sci Conserv 249:22 pp

    Google Scholar 

  • Barnes C, Newall F, Ignjatovic V, Wong P, Cameron F, Jones G, Monagle P (2005) Reduced bone density in children on long-term warfarin. Pediatr Res 57:578–581

    Article  Google Scholar 

  • Belleville J, Cornillon B, Paul J, Baguet J, Clendinnen G, Eloy R (1982) Haemostasis, blood coagulation and fibrinolysis in the Japanese quail. Comp Biochem Physiol 71A:219–230

    Article  CAS  Google Scholar 

  • Benzakour O (2008) Vitamin K-dependent proteins: functions in blood coagulation and beyond. Thromb Haemost 100:527–529

    CAS  Google Scholar 

  • Berny P (2011) Challenges of anticoagulant rodenticides: resistance and ecotoxicology. In: Stoytcheva M (ed) Pesticides in the modern world – pests control and pesticides exposure and toxicity assessment. Tech Europe, Rijeka, pp 441–468

    Google Scholar 

  • Boyle CM (1960) Case of apparent resistance of Rattus norvegicus antagonism between vitamin K and indirect anticoagulants. Nature 188:517

    Article  Google Scholar 

  • Brakes CR, Smith RH (2005) Exposure of non-target small mammals to rodenticides: short-term effects, recovery and implications for secondary poisoning. J Appl Ecol 42:118–128

    Article  CAS  Google Scholar 

  • Brooks MJ, De Laforcade A (2012) Acquired coagulopathies. In: Weiss DJ, Wardrop KJ (eds) Schlam’s veterinary hematology, 6th edn. Wiley-Blackwell, Ames, pp 654–660

    Google Scholar 

  • Brooks JE, Savarie PJ, Johnston JJ (1998) The oral and dermal toxicity of selected chemicals to brown tree snake (Boiga irregularis). Wildl Res 25:427–435

    Article  Google Scholar 

  • Buckle A (2013) Anticoagulant resistance in the United Kingdom and a new guideline for the management of resistant infestations of Norway rats (Rattus norvegicus Berk.) Pest Manag Sci 69:334–341

    Article  CAS  Google Scholar 

  • Buitenhuis HC, Soute BAM, Vermeer C (1990) Comparison of the vitamins K1, K2 and K3 as cofactors for the hepatic vitamin K-dependent carboxylase. Biochim Biophys Acta 1034:170–175

    Article  CAS  Google Scholar 

  • Christopher MJ, Balasubramanyam M, Purushotham KR (1984) Toxicity of three anticoagulant rodenticides to male hybrid leghorns. Z Angew Zool 71:275–281

    CAS  Google Scholar 

  • Committee on Toxicity Testing and Assessment of Environmental Agents (2007) Toxicity testing in the 21st century: a vision and a strategy. National Academy Press, Washington, DC, 217 pp

    Google Scholar 

  • Cox P, Smith RH (1992) Rodenticide ecotoxicology: pre-lethal effects of anticoagulants on rat behaviour. Proc Vert Pest Conf 15:165–170

    Google Scholar 

  • Crabtree DG, Robison WH (1952) Warfarin and its effect on some wildlife species. Trans No Am Wildl Conf 17:167–173

    Google Scholar 

  • Dam H (1935) The antihaemorrhagic vitamin of the chick: occurrence and chemical nature. Nature 135:652–653

    Article  CAS  Google Scholar 

  • Dam H, Schonheyder F, Tage-Hansen E (1936) CLV. Studies on the mode of action of vitamin K. Biochem J 30:1075–1079

    Article  CAS  Google Scholar 

  • Department for Environment, Food and Rural Affairs (DEFRA) (1987) Evaluation on flocoumafen. Available via http://www.pesticides.gov.uk/Resources/CRD/ACP/001_flocoumafen.pdf. Accessed 29 Sept 2015

  • Domella A, Gatto S, Girardi E, Bandoli G (1999) X-ray structures of the anticoagulants coumatetralyl and chlorophacinone. Theoretical calculations and SAR investigations on thirteen anticoagulant rodenticides. J Mol Struct 513:177–199

    Article  Google Scholar 

  • DuVall MD, Murphy MJ, Ray AC, Reagor JC (1989) Case studies on second-generation anticoagulant rodenticide toxicities in nontarget species. J Vet Diagn Invest 1:66–68

    Article  CAS  Google Scholar 

  • Eason CT, Murphy EC, Wright GRG, Spurr EB (2002) Assessment of risks of brodifacoum to non-target birds and mammals in New Zealand. Ecotoxicology 11:35–48

    Article  Google Scholar 

  • Eason CT, Fagerstone KA, Eisemann JD, Humphrys S, O’Hare JR, Lapidge SJ (2010) A review of existing and potential New World and Australasian vertebrate pesticides with a rationale for linking use patterns to registration requirements. Int J Pest Manag 56:109–125

    Article  Google Scholar 

  • Eichbaum FW, Slemer O, Zyngier SB (1979) Anti-inflammatory effect of warfarin and vitamin K1. Naunyn Schmiedeberg’s Arch Pharmacol 18:185–190

    Article  Google Scholar 

  • Eisemann JD, Swift CE (2006) Ecological and human health hazards from broadcast application of 0.005% diphacinone rodenticide baits in native Hawaiian ecosystems. Proc Vert Pest Conf 22:413–433

    Google Scholar 

  • Elias DJ, Johns BE (1981) Response of rats to chronic ingestion of diphacinone. Bull Environ Contam Toxicol 27:559–567

    Article  CAS  Google Scholar 

  • Elmeros M, Christensen TK, Lassen P (2011) Concentrations of anticoagulant rodenticides in stoats Mustela ermine and weasels Mustela nivalis from Denmark. Sci Total Environ 409:2373–2378

    Article  CAS  Google Scholar 

  • European Chemicals Agency (ECHA) (2003) Refined waiving concept for rodenticides. Available via https://echa.europa.eu/documents/10162/16960215/bpd_guid_addendum-tnsg-data_requirements_pt14_en.pdf. Accessed 1 Dec 2015

  • European Chemicals Agency (ECHA) (2014a) Committee for risk assessment opinion proposing harmonised classification labelling at EU level of chlorophacinone. Available via http://echa.europa.eu/documents/10162/864a920d-6d95-4b02-9085-ff434e84fcee. Accessed 4 Dec 2015

  • European Chemicals Agency (ECHA) (2014b) Committee for risk assessment opinion proposing harmonised classification labelling at EU level of bromadiolone. Available via http://www.qsartoolbox.org/documents/10162/b0efaf02-c70c-4e2e-a3ad-d9e7646c122a. Accessed 4 Dec 2015

  • European Chemicals Agency (ECHA) (2014c) Committee for risk assessment opinion proposing harmonised classification labelling at EU level of difenacoum. Available via http://echa.europa.eu/documents/10162/34e86588-c209-41cd-9c9c-d524db3c7bed. Accessed 4 Dec 2015

  • European Union (2010) Directive 98/8/EC concerning the placing of biocidal products on the market. Bromadiolone assessment report. Available via https://circabc.europa.eu/sd/a/861933f1-29f7-4758-8d69-7d9eafea4ca5/Assessment%20Report%20revised%2016122011.pdf. Accessed15 Jan 2015

  • European Union (2012) Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products. Off J Eur Union L167 55, pp 1–123

    Google Scholar 

  • Evans J, Ward AL (1967) Secondary poisoning associated with anticoagulant-killed nutria. J Am Vet Med Assoc 151:856–861

    CAS  Google Scholar 

  • Fisher DD, Timm RM (1987) Laboratory trial of chlorophacinone as a prairie dog toxicant. Great Plains wildlife damage control workshop proceedings. Rapid City, South Dakota, pp 67–69

    Google Scholar 

  • Fisher P, O’Connor C, Wright G, Eason CT (2004) Anticoagulant residues in rats and secondary non-target risk. Science for Conservation 188. Department of Conservation, Wellington, 29 pp

    Google Scholar 

  • Furie B, Bouchard BA, Furie BC (1999) Vitamin K-dependent biosynthesis of γ-carboxy- glutamic acid. Blood 93:1798–1808

    CAS  Google Scholar 

  • Godfrey MER (1985) Non-target and secondary poisoning hazards of ‘second generation’ anticoagulants. Acta Zool Fenn 173:209–212

    Google Scholar 

  • Golden HN, Warner SE, Coffey MJ (2016) A review and assessment of spent lead ammunition and its exposure and effects to scavenging birds in the United States. Rev Environ Contam Toxicol 237:123–191

    CAS  Google Scholar 

  • Goodwin MA, Davis JF, Brown J (1992) Packed cell volume reference intervals to aid in the diagnosis of anemia and polycythemia in young broiler chickens. Avian Dis 36:440–443

    Article  CAS  Google Scholar 

  • Gray A, Eadsforth CV, Dutton AJ (1994) The toxicity of three second-generation rodenticides to barn owls. Pestic Sci 42:179–184

    Article  CAS  Google Scholar 

  • Greaves JH, Ayres P (1973) Warfarin resistance and vitamin K requirement in the rat. Lab Anim 7:141–148

    Article  CAS  Google Scholar 

  • Greaves JH, Cullen-Aryes PB (1988) Genetics of difenacoum resistance in the rat. In: Suttie WH (ed) Current advances in vitamin K research, Elsevier, New York, pp 389–397

    Google Scholar 

  • Griminger P (1965) Vitamin K activity in chickens: phylloquinone and menadione in the presence of stress agrents. J Nutr 87:337–343

    Google Scholar 

  • Grolleau G, Lorgue G, Nahas K (1989) Toxicité secondaire, en laboratoire, d’un rodenticide anticoagulant (bromadiolone) pour des prédateurs de rongeurs champêtres: buse variable (Buteo buteo) et hermine (Mustela ermines). Bull OEPP/EPPO Bull 19:633–648

    Google Scholar 

  • Guddorf V, Kummerfeld N, Mischke R (2014) Methodological aspects of blood coagulation measurements in birds applying commercial reagents—a pilot study. Berl Munch Tierarztl Wochenschr 127:322–327

    Google Scholar 

  • Hagan EC, Radomski JL (1953) The toxicity of 3-(acetonylbenzyl)-4-hydroxycoumarin (warfarin) to laboratory animals. J Am Pharm Assoc 42:379–382

    Google Scholar 

  • Hall JG, Pauli RM, Wilson KM (1980) Maternal and fetal sequelae of anticoagulation during pregnancy. Am J Med 68:122–140

    Article  CAS  Google Scholar 

  • Hanson HH, Barker NW, Mann FD (1951) Clinical experience with 4-hydroxycoumarin anticoagulant no. 63 and the antagonistic effect of menadione and vitamin K1. Circulation 4:844–853

    Article  CAS  Google Scholar 

  • Harr KE (2012) Overview of avian hemostasis. In: Weiss DJ, Wardrop KJ (eds) Schlam’s Veterinary Hematology, 6th edn. Wiley-Blackwell, Ames, pp 703–707

    Google Scholar 

  • Hayes WJ Jr (1967) The 90-dose LD50 and a chronicity factor as measures of toxicity. Toxicol Appl Pharmacol 11:327–335

    Article  CAS  Google Scholar 

  • Health Canada (2012) New use restrictions for commercial class rodenticides in agricultural settings. Canada Pest Management Regulatory Agency. Available via http://www.hc-sc.gc.ca/cps-spc/pubs/pest/_fact-fiche/restriction-rodenticides/index-eng.php. Accessed 17 Dec 2015

  • Heÿl CW (1986) Cumatetralyl as an avicide for use against the Cape sparrow. S Afr J Enol Vitic 7:71–75

    Google Scholar 

  • Hill EF (1994) Acute and subacute toxicology in evaluation of pesticide hazard to avian wildlife. In: Kendall RJ, Lacher TE (eds) Wildlife toxicology and population modeling: integrated studies of agroecosystems. CRC Press, Boca Raton, pp 207–226

    Google Scholar 

  • Hirota Y, Tsugawa N, Nakagawa K, Suhara Y, Tanaka K, Uchino Y, Takeuchi A, Sawada N, Kamao M, Wada A, Okitsu T, Okano T (2013) Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats. J Biol Chem 288:33071–33080

    Article  CAS  Google Scholar 

  • Holmes MV, Hunt BJ, Shearer MJ (2012) The role of dietary vitamin K in the management of oral vitamin K antagonists. Blood Rev 26:1–14

    Article  CAS  Google Scholar 

  • Hone J, Kleba R (1984) The toxicity and acceptability of warfarin and 1080 poison in penned feral pigs. Aust Wildl Res 11:103–111

    Article  Google Scholar 

  • Hooker S, Innes J (1995) Ranging behaviour of forest-dwelling ship rats, Rattus rattus, and effects of poisoning with brodifacoum. New Zeal J Zool 22:291–304

    Google Scholar 

  • Howe AM, Webster WS (1992) The warfarin embryopathy: a rat model showing maxillonasal hypoplasia and other skeletal disturbances. Teratology 46:379–390

    Article  CAS  Google Scholar 

  • International Programme on Chemical Safety (IPCS) (1995) Anticoagulant rodenticides. Environmental Health Criteria 175. Available via http://www.inchem.org/documents/ehc/ehc175.htm. Accessed 26 Nov 2014

  • Jackson WB, Ashton AD (1992) A review of available anticoagulants and their use in the United States. Proc Vert Pest Conf 15:156–160

    Google Scholar 

  • James SB, Raphael BL, Cook RA (1998) Brodifacoum toxicity and treatment in a white-winged wood duck (Cairina scutulata). J Zoo Wildl Med 29:324–327

    CAS  Google Scholar 

  • Joermann G (1998) A review of secondary-poisoning studies with rodenticides. Bull OEPP/ EPPO 28:157–176

    Article  Google Scholar 

  • Kabat H, Stohlman ER, Smith MI (1944) Hypoprothrombinemia induced by administration of indandione derivatives. J Pharmacol Exp Ther 60:160–170

    Google Scholar 

  • Kater AP, Peppelenbosch MP, Brandjes DPM, Lumbantobing M (2002) Dichotomal effect of the coumadin derivative warfarin on inflammatory signal transduction. Clin Diagn Lab Immunol 9:1396–1397

    Google Scholar 

  • Kaukeinen DE (1982) A review of the secondary poisoning hazard potential to wildlife from the use of anticoagulant rodenticides. Proc Vert Pest Conf 10:151–158

    Google Scholar 

  • Klaassen CD (1986) Principles of toxicology. In: Klaassen CD, Amdur MO, Doull J (eds) Casarett and Doull’s toxicology: the basic science of poisons, 3rd edn. Macmillan Publishing Company, New York, pp 11–32

    Google Scholar 

  • Knopper LD, Mineau P, Walker LA, Shore RF (2007) Bone density and breaking strength in UK Raptors exposed to second generation anticoagulant rodenticides. Bull Environ Contam Toxicol 78:249–251

    Article  CAS  Google Scholar 

  • Last JA (2002) The missing link: the story of Karl Paul Link. Toxicol Sci 66:4–6

    Article  CAS  Google Scholar 

  • LaVoie GK (1990) A study of the anticoagulant brodifacoum to American kestrels (Falco sparverius). In: Proceedings of the 3rd international conference of plant protection in the tropics, Genting Highlands, pp 27–29

    Google Scholar 

  • Lechevin JC, Poché RM (1988) Activity of LM 2219 (difethialone), a new anticoagulant rodenticide, in commensal rodents. Proc Vert Pest Conf 13:59–63

    Google Scholar 

  • Lee CH (1994) Secondary toxicity of some rodenticides to barn owls. In: Proceedings of the 4th international conference on plant protection in the tropics, Kuala Lumpur, pp 161–163

    Google Scholar 

  • Link KP (1959) The discovery of dicumarol and its sequels. Circulation 19:97–107

    Article  CAS  Google Scholar 

  • Littin KE, O'Connor CE, Gregory NG, Mellor DJ, Eason CT (2002) Behaviour, coagulopathy and pathology of brushtail possums (Trichosurus vulpecular) poisoned with brodifacoum. Wildl Res 29:259–267

    Article  Google Scholar 

  • Lund M (1981) Hens, eggs and anticoagulants. Int Pest Control 5:126–128

    Google Scholar 

  • Lund M, Rasmussen AM (1986) Secondary poisoning hazards to stone martens (Martes foina) fed bromadiolone-poisoned mice. Nord Vet Med 38:241–243

    CAS  Google Scholar 

  • Mackintosh CG, Laas FJ, Godfrey MER, Turner K (1988) Vitamin Kt treatment of brodifacoum poisoning in dogs. Proc Vert Pest Conf 13:86–90

    Google Scholar 

  • Madden W (2002) Racumin rodenticide – potential environmental impacts on birds. In: Newton I, Kavanagh R, Olsen J, Taylor I (eds) Ecology and conservation of owls. CSIRO Publishing, Collingwood, pp 296–301

    Google Scholar 

  • Massey G, Valutis L, Marzluff J (1997) Secondary poisoning effects of diphacinone on Hawaiian crows: a study using American crows as surrogates. Report to the U.S. Fish and Wildlife Service, Pacific Islands Office. Sustainable Ecosystems Institute, Meridian. 12 pp.

    Google Scholar 

  • McDowell LR (2000) Vitamins in animal and human nutrition, 2nd edn. Iowa University Press, Ames, 793 pp

    Book  Google Scholar 

  • McLoed L, Saunders G (2013) Pesticides used in the management of vertebrate pests in Australia: a review. NSW Department of Primary Industries. Available via http://www.dpi.nsw.gov.au/data/assets/pdf_file/0007/486187/Pesticides-used-in-the-management-of-vertebrate-pests-in-australia-a-review.pdf. Accessed 5 Jan 2015

    Google Scholar 

  • Mendenhall VM, Pank LF (1980) Secondary poisoning of owls by anticoagulant rodenticides. Wildl Soc Bull 8:311–315

    Google Scholar 

  • Mineau P, Baril A, Collins BT, Duffe J, Joerman G, Luttik R (2001) Pesticide acute toxicity reference values for birds. Rev Environ Contam Toxicol 170:13–74

    CAS  Google Scholar 

  • Mosterd JJ, Thijssen HHW (1991) The long-term effects of the rodenticide, brodifacoum, on blood coagulation and vitamin K metabolism in rats. Br J Pharmacol 104:531–535

    Article  CAS  Google Scholar 

  • Mount ME, Woody BJ, Murphy MJ (1986) The anticoagulant rodenticides. In: Kirk RW (ed) Current veterinary therapy IX small animal practice, 9th edn. WB Saunders, Philadelphia, pp 156–165

    Google Scholar 

  • Murray M (2011) Anticoagulant rodenticide exposure and toxicosis in four species of birds of prey presented to a wildlife clinic in Massachusetts, 2006–2011. J Zoo Wildl Med 42:88–97

    Article  Google Scholar 

  • Naim M, Mohd Noor H, Kassim A, Abu J (2011) Comparison of the breeding performance of the barn owl Tyto alba jacanica under chemical and bio-based rodenticide baiting in immature oil palms in Malaysia. Global Sci Books, Dyn Biochem Process Biotech Mol Biol 5:5–11

    Google Scholar 

  • Newton I, Wyllie I, Freestone P (1990) Rodenticides in British barn owls. Environ Pollut 68:101–117

    Article  CAS  Google Scholar 

  • Newton I, Wyllie I, Gray A, Eadsforth CV (1994) The toxicity of the rodenticide flocoumafen to barn owls and its elimination via pellets. Pestic Sci 41:187–193

    Article  CAS  Google Scholar 

  • O’Connor CE, Eason CT, Endepols S (2003) Evaluation of secondary poisoning hazards to ferrets and weka from the rodenticide coumatetralyl. Wildl Res 30:143–146

    Article  Google Scholar 

  • Organisation for Economic and Co-operation and Development Test No. 223 (OECD) (2010) Avian acute oral toxicity test. Available via http://www.oecd-ilibrary.org/environment/test-no-223-avian-acute-oral-toxicity-test_9789264090897-en. Accessed 9 Dec 2014

  • Organisation for Economic Co-operation and Development Test No. 409 (OECD) (1998) Repeated dose 90-day oral toxicity study in non-rodents. Available via http://www.oecd-ilibrary.org/environment/test-no-409-repeated-dose-90-day-oral-toxicity-study-in-non-rodents_9789264070721-en. Accessed 21 Dec 2015

  • Organisation for Economic Co-operation and Development Test No. 452 (OECD) (2009) Chronic toxicity studies. Available via http://www.oecd-ilibrary.org/environment/test-no-452-chronic-toxicity-studies_9789264071209-en. Accessed 21 Dec 2015

  • Pank LF, Hirata DN (1976) Primary and secondary toxicity of anticoagulant rodenticides. U.S. Fish and Wildlife Service, Denver Wildlife Research Center. Unpublished Report, pp 13

    Google Scholar 

  • Pauli BD, Money S, Sparling DW (2010) Ecotoxicology of pesticides in reptiles. In: Sparling DW, Linder G, Bishop CA, Krest SK (eds) Ecotoxicology of amphibians and reptiles, 2nd edn. CRC Press/Taylor and Francis Group, Boca Raton, pp 203–224

    Chapter  Google Scholar 

  • Pelz H-J, Rost S, Hunerberg M, Fregin A, Heiberg A-C, Baert K, MacNicoll AD, Prescott CV, Walker A-S, Oldenburg J, Muller CR (2005) The genetic basis of resistance to anticoagulant rodenticides. Genetics 170:1839–1847

    Article  CAS  Google Scholar 

  • Pitt WC, Bersten AR, Shiels AB, Volker SF, Eisenmann JD, Wegmann AS, Howald GR (2015) Non-target species mortality and the measurement of brodifacoum rodenticide residues after a rat (Rattus rattus) eradication on Palmyra Atoll, tropical Pacific. Biol Conserv 185:36–46

    Article  Google Scholar 

  • Poché RM (1988) Rodent tissue residue and secondary hazard studies with bromadiolone. Bull OEPP/EPPO Bull 18:323–330

    Article  Google Scholar 

  • Poché RM, Mach JJ (2001) Wildlife primary and secondary toxicity studies with warfarin. In: Johnston JJ (ed) Pesticides and wildlife, American Chemical Society symposium series, vol 771, pp 181–195

    Chapter  Google Scholar 

  • Ponczek MD, Gailani D, Doolittle RF (2008) Evolution of the contact phase of vertebrate blood coagulation. J Thromb Haemost 6:1976–1883

    Article  CAS  Google Scholar 

  • Popov A, Mirkov I, Zolotarevski L, Jovic M, Belij S, Kataranovski D, Kataranovski M (2011) Local proinflammatory effects of repeated skin exposure to warfarin, an anticoagulant rodenticide in rats. Biomed Environ Sci 24:180–189

    CAS  Google Scholar 

  • Prescott CV, Johnson RA (2015) The laboratory evaluation of rodenticides. In: Buckle AP, Smith RH (eds) Rodent pests and their control. CAB International, Boston, pp 155–170

    Google Scholar 

  • Prescott CV, Buckle AP, Hussain I, Endepols S (2007) A standardized BCR resistance test for all anticoagulant rodenticides. Int J Pest Manag 53:265–272

    Article  CAS  Google Scholar 

  • Prier RF, Derse PH (1962) Evaluation of the hazard of secondary poisoning by warfarin-poisoned rodents. J Am Vet Med Assoc 140:351–354

    CAS  Google Scholar 

  • Primus T, Wright G, Fisher P (2005) Accidental discharge of brodifacoum baits in a tidal marine environment: a case study. Bull Environ Contam Toxicol 74:913–919

    Article  CAS  Google Scholar 

  • Radvanyi A, Weaver P, Massari C, Bird D, Broughton E (1988) Effects of chlorophacinone on captive kestrels. Bull Environ Contam Toxicol 41:441–448

    Article  CAS  Google Scholar 

  • Rattner BA, Horak KE, Warner SE, Johnston JJ (2010) Acute toxicity of diphacinone in Northern bobwhite: effects on survival and blood clotting. Ecotoxicol Environ Saf 73:1159–1164

    Article  CAS  Google Scholar 

  • Rattner BA, Horak KE, Warner SE, Day DD, Meteyer CU, Volker SF, Eisemann JD, Johnston JJ (2011) Acute toxicity, histopathology, and coagulopathy in American kestrels (Falco sparverius) following administration of the rodenticide diphacinone. Environ Toxicol Chem 30:1213–1222

    Article  CAS  Google Scholar 

  • Rattner BA, Lazarus RS, Eisenreich KM, Horak KE, Volker SF, Campton CM, Eisemann JD, Meteyer CU, Johnston JJ (2012a) Comparative risk assessment of the first-generation anticoagulant rodenticide diphacinone in raptors. Proc Vert Pest Conf 25:124–130

    Google Scholar 

  • Rattner BA, Horak KE, Lazarus RS, Eisenreich KM, Meteyer CU, Volker SF, Campton CM, Eisemann JD, Johnston JJ (2012b) Assessment of toxicity and potential risk of the anticoagulant rodenticide diphacinone using eastern screech-owls (Megascops asio). Ecotoxicology 21:832–846

    Article  CAS  Google Scholar 

  • Rattner BA, Lazarus RS, Elliott JE, Shore RF, van den Brink N (2014a) Adverse outcome pathway and risks of anticoagulant rodenticides to predatory wildlife. Environ Sci Technol 48:8433–8445

    Google Scholar 

  • Rattner BA, Horak KE, Lazarus RS, Goldade DA, Johnston JJ (2014b) Toxicokinetics and coagulopathy threshold of the rodenticide diphacinone in Eastern screech-owls (Megascops asio). Environ Toxicol Chem 33:74–81

    Google Scholar 

  • Rattner BA, Horak KE, Lazarus RS, Schultz SL, Abbo BG, Volker SF (2015) Toxicity reference values for chlorophacinone and their application for assessing anticoagulant risk to raptors. Ecotoxicology 24:720–734

    Article  CAS  Google Scholar 

  • Riedel B, Riedel M, Wieland H, Grün G (1988) Vogeltoxikologische bewertung des einsatzes von delicia-chlorphacinon-kodern in landwirtschaftlichen kulterun. Institut fur Planzenschutzforshung Kleinmachnow der Akademie der Landwirtschaftwissenschoften der DRR 42:48–51

    Google Scholar 

  • Riegerix R, Tillitt DE (2015) Toxicity of anticoagulant rodenticides in two freshwater fishes to aid test design for Hawaiian triggerfish. Society of environmental toxicology and chemistry-North America 36th annual meeting. Abstract WP206

    Google Scholar 

  • Riley SPD, Bromley C, Poppenga RH, Uzal FA, Whited L, Sauvajot RM (2007) Anticoagulant exposure and notoedric mange in bobcats and mountain lions in urban southern California. J Wildl Manage 71:1874–1884

    Article  Google Scholar 

  • Robinson MH, Twigg LE, Wheeler SH, Martin GR (2005) Effect of the anticoagulant, pindone, on the breeding performance and survival of merino sheep, Ovis aries. Comp Biochem Physiol B 140:465–473

    Article  CAS  Google Scholar 

  • Salim H, Noor HM, Hamid NH, Omar D, Kasim A (2013) Sub-lethal effects of bromadiolone and chlorophacinone on population and breeding performance of barn owl, Tyto alba in palm oil plantations. Paper proceedings of Agri Animal 2013. International Center for Research and Development, Sri Lanka. pp 243–266

    Google Scholar 

  • Salim H, Mohd Noor H, Hamid NH, Omar D, Kasim A, Abidin CMRZ (2014) Secondary poisoning of captive barn owls, Tyto alba javanica through feeding rats poisoned with chlorophacinone and bromadiolone. J Oil Palm Res 26:62–72

    CAS  Google Scholar 

  • Saravanan K, Kanakasabai R (2004) Evaluation of secondary poisoning of difethialone, a new second-generation anticoagulant rodenticide to barn owl, Toyo alba Hartert under captivity. Indian J Exp Biol 42:1013–1016

    CAS  Google Scholar 

  • Savarie PJ, Hayes DJ, McBride RT, Roberts JD (1979) Efficacy and safety of diphacinone as a predacide. In: Kenaga EE (ed) Avian and mammalian wildlife toxicology. STP 693 American Society for Testing Materials, Philadelphia, pp 69–79

    Chapter  Google Scholar 

  • Scanes CG (2015) Blood. In: Sturkie’s avian physiology, 6th edn. Elsevier, New York, pp 167–191

    Chapter  Google Scholar 

  • Schmaier AA, Stalker TJ, Runge JJ, Lee D, Nagaswami C, Meriko P, Chen M, Cliché S, Gariépy C, Brass LF, Hammer DA, Weisel JW, Rosenthal K, Kahn ML (2011) Occlusive thrombi arise in mammals but not birds in response to arterial injury: evolutionary insight into human cardiovascular disease. Blood 118:3661–3669

    Google Scholar 

  • Shearer MJ, Newman P (2008) Metabolism and cell biology of vitamin K. Haemost Thromb 100:530–547

    CAS  Google Scholar 

  • Shearer MJ, Fu X, Booth SL (2012) Vitamin K nutrition, metabolism and requirements: current concepts and future research. Adv Nutr 3:182–195

    Article  CAS  Google Scholar 

  • Shlosberg A, Booth L (2006) Veterinary and clinical treatment of vertebrate pesticide poisoning – a technical review. Landcare Research, Lincoln, 101 pp

    Google Scholar 

  • Sokoll LJ, Sadowski JA (1996) Comparison of biochemical indexes for assessing vitamin K nutritional status in a healthy adult population. Am J Clin Nutr 63:566–573

    CAS  Google Scholar 

  • Stevenson RE, Burton OM, Ferlauto GJ, Taylor HA (1980) Hazards of oral anticoagulants during pregnancy. J Am Med Assoc 243:1549–1551

    Google Scholar 

  • Thijssen HHW (1995) Warfarin-based rodenticides: mode of action and mechanism of resistance. Pestic Sci 43:73–78

    Google Scholar 

  • Thomas PJ, Mineau P, Shore RF, Champoux L, Martin PA, Wilson LK, Fitzgerald G, Elliott JE (2011) Second generation anticoagulant rodenticides in predatory birds: probabilistic characterisation of toxic liver concentrations and implications for predatory bird populations in Canada. Environ Int 37:914–920. and corrigendum 40:256

    Google Scholar 

  • Thomson AE, Squires EJ, Gentry PA (2002) Assessment of factor V, VII and X activities, the key coagulant proteins of the tissue factor pathway in poultry plasma. Br Poultry Sci 43:313–321

    Article  CAS  Google Scholar 

  • Tie J-K, Stafford DW (2008) Structure and function of vitamin K epoxide reductase. Vitam Horm 78:103–130

    Article  CAS  Google Scholar 

  • Townsend MG, Fletcher MR, Odam EM, Stanley PI (1981) An assessment of the secondary poisoning hazard of warfarin to tawny owls. J Wildl Manag 45:242–248

    Article  CAS  Google Scholar 

  • Townsend MG, Bunyan PJ, Odam EM, Stanley PI, Wardall HP (1984) Assessment of secondary poisoning hazard of warfarin to least weasels. J Wildl Manag 45:628–632

    Article  Google Scholar 

  • Triplett DA, Harms CS (1981) Procedures for the coagulation laboratory. American Society of Clinical Pathologists, Chicago, 179 pp

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1998) Reregistration eligibility decision (RED) rodenticide cluster. Office of Prevention, Pesticides and Toxic Substances (7508W). Washington, D.C. 319 pp

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (2004) Potential risks of nine rodenticides to birds and nontarget mammals: a comparative approach. EPA P.2004.27 A. Office of Prevention, Pesticides and Toxic Substances, Washington, DC. 230 pp, Available via http://www.fwspubs.org/doi/suppl/10.3996/052012-JFWM-042/suppl_file/10.3996_052012-jfwm-042.s4.pdf. Accessed 26 Aug 2016

  • U.S. Environmental Protection Agency (USEPA) (2011) Risks of non-compliant rodenticides to nontarget wildlife – Background paper for scientific advisory panel on notice of intent to cancel non-RMD compliant rodenticide products. EPA-HQ-OPP-2011-0718-0006. Available via https://www.regulations.gov/document?D=EPA-HQ-OPP-2011-0718-0006. Accessed 26 Aug 2016

  • U.S. Environmental Protection Agency (USEPA) (2015) ECOTOX User Guide: ECOTOXicology Database System. Version 4.0. Available via http:/www.epa.gov/ecotox/. Accessed 23 Dec 2015

  • van den Berg G, Nauta WT (1975) Effects of anti-inflammatory 2-aryl-1,3-indandiones on oxidative phosphorylation in rat liver mitochondria. Biochem Pharmacol 24:815–821

    Article  Google Scholar 

  • Veltmann JR Jr, Ross E, Olbrich SE (1981) The physiological effects of feeding warfarin to poultry. Poult Sci 60:2603–2611

    Article  CAS  Google Scholar 

  • Vyas NB, Rattner BA (2012) Critique on the use of the standardized avian acute oral toxicity test for first generation anticoagulant rodenticides. Hum Ecol Risk Assess 18:1069–1077

    Article  CAS  Google Scholar 

  • Vyas NB, Spann JW, Hulse CS, Borges SL, Bennett RS, Torrez M, Williams BI, Leffel R (2006) Field evaluation of an avian risk assessment model. Environ Toxicol Chem 25:1762–1771

    Article  CAS  Google Scholar 

  • Vyas NB, Lockhart JM, Rattner BA, Kuncir F (2014) Coagulopathy and survival of red-tailed hawks following exposure to the anticoagulant rodenticide Rozol®. Society of Environmental Toxicology and Chemistry-North America 35th Annual Meeting. Abstract MP043

    Google Scholar 

  • Wallace ME, MacSwiney FJ (1976) A major gene controlling warfarin-resistance in the house mouse. J Hyg 76:73–181

    Article  Google Scholar 

  • Watanabe KP, Saengtienchai A, Tanaka KD, Ikenaka Y, Ishizuka M (2010) Comparison of warfarin sensitivity between rat and birds species. Comp Biochem Physiol Part C 152:114–119

    Google Scholar 

  • Watanabe KP, Kawata M, Ikenaka Y, Nakayama SMM, Ishii C, Darwish WS, Saengtienchai A, Mizukawa H, Ishizuka M (2015) Cytochrome P450-mediated warfarin metabolic ability is not a critical determinant of warfarin sensitivity in avian species: in vitro assays in several birds and in vivo assays in chickens. Environ Toxicol Chem 34:2328–2334

    Google Scholar 

  • Watt BE, Proudfoot AT, Bradberry SM, Vale JA (2005) Anticoagulant rodenticides. Toxicol Rev 24:259–269

    Article  CAS  Google Scholar 

  • Webster KH, Harr KE, Bennett DC, Williams TD, Cheng KM, Maisonneuve F, Elliot JE (2015) Assessment of toxicity and coagulopathy in Japanese quail and testing in wild owls. Ecotoxicology 24:1087–1101

    Article  CAS  Google Scholar 

  • Weigt S, Huebler N, Strecker R, Braunbeck T, Broschard TH (2012) Developmental effects of coumarin and the anticoagulant coumarin derivative warfarin on zebrafish (Danio rerio) embryos. Reprod Toxicol 33:133–141

    Google Scholar 

  • Weir SM, Yu S, Talent LG, Maul JD, Anderson TA, Salice CJ (2015) Improving reptile ecological risk assessment: oral and dermal toxicity of pesticides to a common lizard species (Sceloporus occidentalis). Environ Toxicol Chem 34:1778–1786

    Article  CAS  Google Scholar 

  • Weir SM, Yu S, Knox A, Talent LG, Monks JM, Salice CJ (2016) Acute toxicity and risk to lizards of rodenticides and herbicides commonly used in New Zealand. New Zeal J Ecol 40:342–350

    Google Scholar 

  • Will BH, Usui Y, Suttie JW (1992) Comparative metabolism and requirement of vitamin K in chicks and rats. J Nutr 122:2354–2360

    Google Scholar 

  • Winn MJ, Clegg JAD, Park BK (1987) An investigation of sex-linked differences to the toxic and to the pharmacological action of difenacoum: Studies in mice and rats. J Pharm Pharmacol 39:219–222

    Article  CAS  Google Scholar 

  • Witmer GW, Burke PW (2009) Influence of vitamin K-rich plant foods on anticoagulant baiting efficacy in wild house mice, wild Norway rats, and wild black rats. Pac Conserv Biol 15:87–91

    Article  Google Scholar 

  • Witmer GW, Snow NP, Moulton RS (2013) The effects of vitamin K1-rich plant foods on the efficacy of the anticoagulant rodenticides chlorophacinone and diphacinone, used against the montane voles (Microtus montanus). Inter J Pest Manag 59:205–210

    Article  CAS  Google Scholar 

  • Wyllie I (1995) Potential secondary poisoning of barn owls by rodenticides. Pestic Outlook 6:19–25

    Google Scholar 

Download references

Disclaimer

This manuscript was subjected to review by USEPA’s Office of Pesticide Programs and was approved for submission. Approval does not signify that the contents reflect the views of USEPA. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barnett A. Rattner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rattner, B.A., Mastrota, F.N. (2018). Anticoagulant Rodenticide Toxicity to Non-target Wildlife Under Controlled Exposure Conditions. In: van den Brink, N., Elliott, J., Shore, R., Rattner, B. (eds) Anticoagulant Rodenticides and Wildlife. Emerging Topics in Ecotoxicology, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-64377-9_3

Download citation

Publish with us

Policies and ethics