Skip to main content

Knowledge Communities and Socio-Cognitive Taxonomies

  • Chapter
  • First Online:
Formal Concept Analysis of Social Networks

Part of the book series: Lecture Notes in Social Networks ((LNSN))

Abstract

Social network analysis (SNA) typically appraises social groups by relying either on interaction patterns or on affiliation similarity. The former case represents the bulk of SNA approaches and relates to the so-called one-mode networks, which are by design blind to actor attributes. The latter case relates to what is denoted as two-mode networks and corresponds to a less abundant literature which uses actor attributes, yet eventually tends to focus much more on actor rather than attribute groups. This chapter aims to show how approaches such as formal concept analysis (FCA) make it possible to appraise actors and attributes on an equal footing. In the particular case of knowledge communities, where actor attributes represent cognitive properties, we deal with joint social and cognitive taxonomies, or socio-cognitive taxonomies. We further demonstrate that FCA also addresses several of the key traditional challenges of community detection in SNA—namely, overlapping groups, hierarchy, and temporal evolution and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    “The most general case in which the persistence of the group presents itself as a problem occurs in the fact that, in spite of the departure and the change of members, the group remains identical. We say that it is the same state, the same association, the same army, which now exists that existed so and so many decades or centuries ago. This, although no single member of the original organization remains.” [64, p. 667]

References

  1. Abbott, A.: Things of boundaries. Soc. Res. 62(4), 857–882 (1995)

    MathSciNet  Google Scholar 

  2. Alba, R.D.: A graph-theoretic definition of a sociometric clique. J. Math. Sociol. 3, 113–126 (1973)

    Article  MathSciNet  Google Scholar 

  3. Arabie, P., Carroll, J.D.: Conceptions of overlap in social structure. In: Freeman, L.C., White, D.R., Romney, A.K. (eds.) Research Methods in Social Network Analysis, pp. 367–392. George Mason University Press, Fairfax, VA (1989)

    Google Scholar 

  4. Balamane, A., Missaoui, R., Kwuida, L., Vaillancourt, J.: Descriptive group detection in two-mode data networks using biclustering. In: Proc. of 2016 IEEE/ACM Intl. Conf. on Advances in Social Networks Analysis and Mining (ASONAM). IEEE Computer Society, San Francisco (2016)

    Google Scholar 

  5. Barbut, M., Monjardet, B.: Algèbre et Combinatoire, vol. II. Hachette, Paris (1970)

    MATH  Google Scholar 

  6. Bell, C., Newby, H.: Community Studies: An Introduction to the Sociology of the Local Community. Allen & Unwin, London (1972)

    Google Scholar 

  7. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008)

    Article  Google Scholar 

  8. Boeck, P.D., Rosenberg, S.: Hierarchical classes: model and data analysis. Psychometrika 53(3), 361–381 (1988)

    Article  Google Scholar 

  9. Bonacich, P.: Using boolean algebra to analyze overlapping memberships. Sociol. Methodol. 9, 101–115 (1978)

    Article  Google Scholar 

  10. Breiger, R.L.: The duality of persons and groups. Soc. Forces 53(2), 181–190 (1974)

    Article  Google Scholar 

  11. Buzmakov, A., Kuznetsov, S.O., Napoli, A.: Is concept stability a measure for pattern selection? Proc. Comput. Sci. 31, 918–927 (2014)

    Article  Google Scholar 

  12. Capocci, A., Servedio, V., Caldarelli, G., Colaiori, F.: Detecting communities in large networks. Physica A 352, 660–676 (2005)

    Article  Google Scholar 

  13. Cartwright, D., Harary, F.: Structural balance: a generalization of Heider’s theory. Psychol. Rev. 63, 277–292 (1956)

    Article  Google Scholar 

  14. Clauset, A.: Finding local communities in networks. Phys. Rev. E 72, 026132 (2005)

    Article  Google Scholar 

  15. Cohendet, P., Créplet, F., Dupouet, O.: Organisational innovation, communities of practice and epistemic communities: the case of Linux. In: Economics with Heterogeneous Interacting Agents, pp. 303–326. Springer, Berlin (2001)

    Google Scholar 

  16. Cowan, R., David, P.A., Foray, D.: The explicit economics of knowledge codification and tacitness. Ind. Corp. Chang. 9(2), 212–253 (2000)

    Article  Google Scholar 

  17. Davis, J.A.: Clustering and structural balance in graphs. Hum. Relat. 20, 181–187 (1967)

    Article  Google Scholar 

  18. Davis, J.A., Leinhardt, S.: The structure of positive interpersonal relations in small groups. In: Berger, J., Zelditch, M., Anderson, B. (eds.) Sociological Theories in Progress. Houghton Mifflin, Boston, MA (1970)

    Google Scholar 

  19. Doreian, P.: On the evolution of group and network structure. Soc. Netw. 2, 235–252 (1979)

    Article  MathSciNet  Google Scholar 

  20. Doreian, P., Mrvar, A.: A partitioning approach to structural balance. Soc. Netw. 18(2), 149–168 (1996)

    Article  Google Scholar 

  21. Doreian, P., Mrvar, A.: Partitioning signed social networks. Soc. Netw. 31, 1–11 (2009)

    Article  Google Scholar 

  22. Edling, C.R.: Mathematics in sociology. Annu. Rev. Sociol. 28, 197–220 (2002)

    Article  Google Scholar 

  23. Elias, N.: Towards a theory of communities. In: Bell, C., Newby, H. (eds.) The Sociology of Community: A Selection of Readings. Routledge, London (1974)

    Google Scholar 

  24. Elzinga, P., Wolff, K., Poelmans, J.: Analyzing chat conversations of pedophiles with temporal relational semantic systems. In: Proc. 1st IEEE European Conference on Intelligence and Security Informatics, pp. 242–249. Odense, Denmark (2012)

    Google Scholar 

  25. Everett, M.G.: Role similarity and complexity in social networks. Soc. Netw. 7, 353–359 (1985)

    Article  MathSciNet  Google Scholar 

  26. Everett, M.G., Borgatti, S.P.: Analyzing clique overlap. Connections 21(1), 49–61 (1998)

    Google Scholar 

  27. Forsyth, E., Katz, L.: A matrix approach to the analysis of sociometric data: preliminary report. Sociometry 9(4), 340–347 (1946)

    Article  Google Scholar 

  28. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75—174 (2010)

    Article  MathSciNet  Google Scholar 

  29. Freeman, L.C.: The sociological concept of ‘group’: an empirical test of two models. Am. J. Sociol. 98(1), 152–166 (1992)

    Article  Google Scholar 

  30. Freeman, L.C.: Un modèle de la structure des interactions dans les groupes. Rev. Fr. Sociol. 36, 743–757 (1995)

    Article  Google Scholar 

  31. Freeman, L.C.: Finding social groups: a meta-analysis of the Southern women data. In: Breiger, R., Carley, K., Pattison, P. (eds.) Dynamic Social Network Modeling and Analysis, pp. 39–97. The National Academies Press, Washington, DC (2003)

    Google Scholar 

  32. Freeman, L.C., White, D.R.: Using Galois lattices to represent network data. Sociol. Methodol. 23, 127–146 (1993)

    Article  Google Scholar 

  33. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)

    Book  Google Scholar 

  34. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. PNAS 99, 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  35. Gnatyshak, D., Ignatov, D.I., Semenov, A., Poelmans, J.: Gaining insight in social networks with biclustering and triclustering. In: Aseeva, N., Babkin, E., Kozyrev, O. (eds.) Perspectives in Business Informatics Research BIR 2012: 11th Intl. Conf., Nizhny Novgorod, Russia, Sept 24–26, pp. 162–171. Springer, Berlin (2012)

    Chapter  Google Scholar 

  36. Haas, P.: Introduction: epistemic communities and international policy coordination. Int. Organ. 46(1), 1–35 (1992)

    Article  MathSciNet  Google Scholar 

  37. Heider, F.: Attitudes and cognitive organization. J. Psychol. 21, 107–112 (1946)

    Article  Google Scholar 

  38. Hutchins, E.: Distributed cognition. In: Smelser, N.J., Baltes, P.B. (eds.) International Encyclopedia of the Social and Behavioral Sciences, pp. 2068–2072. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  39. Klimushkin, M., Obiedkov, S., Roth, C.: Approaches to the selection of relevant concepts in the case of noisy data. In: Kwuida, L., Sertkaya, B. (eds.) Proc. 8th Intl. Conf. Formal Concept Analysis. LNCS/LNAI, vol. 5986, pp. 255–266. Springer, Berlin (2010)

    Chapter  Google Scholar 

  40. Knorr-Cetina, K.: Scientific communities or transepistemic arenas of research? A critique of quasi-economic models of science. Soc. Stud. Sci. 12(1), 101–130 (1982)

    Google Scholar 

  41. Kuznetsov, S.: Stability as an estimate of degree of substantiation of hypotheses derived on the basis of operational similarity. Nauchn. Tekh. Inf. 2(12), 21–29 (1990)

    Google Scholar 

  42. Kuznetsov, S., Obiedkov, S., Roth, C.: Reducing the representation complexity of lattice-based taxonomies. In: Priss, U., Polovina, S., Hill, R. (eds.) Conceptual Structures: Knowledge Architectures for Smart Applications: 15th Intl. Conf. on Conceptual Structures, ICCS 2007, Sheffield, UK. LNCS/LNAI, vol. 4604, pp. 241–254. Springer, Berlin (2007)

    Google Scholar 

  43. Latapy, M., Magnien, C., Vecchio, N.D.: Basic notions for the analysis of large two-mode networks. Soc. Netw. 30(1), 31–48 (2008)

    Article  Google Scholar 

  44. Lehmann, S., Schwartz, M., Hansen, L.K.: Biclique communities. Phys. Rev. E 78, 016108 (2008)

    Article  MathSciNet  Google Scholar 

  45. Lorrain, F., White, H.C.: Structural equivalence of individuals in social networks. J. Math. Sociol. 1(49–80) (1971)

    Article  Google Scholar 

  46. Luce, R.D.: Connectivity and generalized cliques in sociometric group structure. Psychometrika 15, 169–190 (1950)

    Article  MathSciNet  Google Scholar 

  47. Luce, R.D., Perry, A.: A method of matrix analysis of group structure. Psychometrika 14, 95–116 (1949)

    Article  MathSciNet  Google Scholar 

  48. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001)

    Article  Google Scholar 

  49. Mitra, B., Tabourier, L., Roth, C.: Intrinsically dynamic network communities. Comput. Netw. 56(3), 1041–1053 (2012)

    Article  Google Scholar 

  50. Moody, J.: Peer influence groups: identifying dense clusters in large networks. Soc. Netw. 23, 261–283 (2001)

    Article  Google Scholar 

  51. Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. B 38, 321–330 (2004)

    Article  Google Scholar 

  52. Newman, M.E.J.: Modularity and community structure in networks. PNAS 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  53. Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446, 664–667 (2007)

    Article  Google Scholar 

  54. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  55. Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis in knowledge processing: a survey on applications. Expert Syst. Appl. 40(16), 6538–6560 (2013)

    Article  Google Scholar 

  56. Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

    Article  MathSciNet  Google Scholar 

  57. Rodriguez, M.A., Pepe, A.: On the relationship between the structural and socioacademic communities of a coauthorship network. J. Informet. 2, 195–201 (2008)

    Article  Google Scholar 

  58. Roth, C.: Binding social and semantic networks. In: Proceedings of ECCS 2006, 2nd European Conference on Complex Systems, Oxford (2006)

    Google Scholar 

  59. Roth, C.: Communautés, analyse structurale et réseaux socio-sémantiques. In: Sainsaulieu, I., Salzbrunn, M., Amiotte-Suchet, L. (eds.) Faire communautén société – Dynamique des appartenances collectives, pp. 113–128. Presses Universitaires de Rennes, Rennes (2010)

    Chapter  Google Scholar 

  60. Roth, C., Bourgine, P.: Lattice-based dynamic and overlapping taxonomies: the case of epistemic communities. Scientometrics 69(2), 429–447 (2006)

    Article  Google Scholar 

  61. Roth, C., Obiedkov, S., Kourie, D.G.: Towards concise representation for taxonomies of epistemic communities. In: Yahia, S.B., Nguifo, E.M. (eds.) Proc. CLA 4th Intl. Conf. on Concept Lattices and Their Applications. LNCS/LNAI, vol. 4923, pp. 240–255. Springer, Berlin (2006)

    Chapter  Google Scholar 

  62. Roth, C., Cointet, J.P., Obiedkov, S., Romashkin, N.: Analyse textuelle des motions du Congrès de Reims du PS (2008). http://tinyurl.com/39g6lch

    Google Scholar 

  63. Ruggie, J.G.: International responses to technology: concepts and trends. Int. Organ. 29(3), 557–583 (1975)

    Article  Google Scholar 

  64. Simmel, G.: The persistence of social groups. Am. J. Sociol. 3(5), 662 (1898)

    Article  Google Scholar 

  65. Soldano, H., Santini, G.: Graph abstraction for closed pattern mining in attributed networks. In: ECAI, pp. 849–854 (2014)

    Google Scholar 

  66. Soldano, H., Ventos, V.: Abstract concept lattices. In: Valtchev, P., Jäschke, R. (eds.) Proc. Intl. Conf. on Formal Concept Analysis (ICFCA). LNAI, vol. 6628, pp. 235–250. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  67. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with TITANIC. Data Knowl. Eng. 42, 189–222 (2002)

    Article  Google Scholar 

  68. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  69. Wellman, B., Carrington, P.J., Hall, A.: Networks as personal communities. In: Wellman, B., Berkowitz, S.D. (eds.) Social Structures: A Network Analysis, pp. 130–184. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  70. White, D.R., Harary, F.: The cohesiveness of block in social networks: node connectivity and conditional density. Sociol. Methodol. 31, 305–359 (2001)

    Article  Google Scholar 

  71. White, D.R., Reitz, K.P.: Graph and semigroup homomorphisms on networks of relations. Soc. Netw. 5, 193–234 (1983)

    Article  MathSciNet  Google Scholar 

  72. White, H.C., Boorman, S.A., Breiger, R.L.: Social-structure from multiple networks. I: blockmodels of roles and positions. Am. J. Sociol. 81, 730–780 (1976)

    Google Scholar 

  73. Wille, R.: Concept lattices and conceptual knowledge systems. Comput. Math. Appl. 23, 493 (1992)

    Article  Google Scholar 

  74. Wolff, K.: Applications of temporal conceptual semantic systems. In: Wolff, K., Palchunov, D.E., Zagoruiko, N.G. (eds.) Knowledge Processing and Data Analysis. LNAI, vol. 6581, pp. 59–78. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Acknowledgements

The present contribution partially relies on ideas introduced in a book chapter originally published in French and entitled “Communautés, analyse structurale et réseaux socio-sémantiques” [59].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roth, C. (2017). Knowledge Communities and Socio-Cognitive Taxonomies. In: Missaoui, R., Kuznetsov, S., Obiedkov, S. (eds) Formal Concept Analysis of Social Networks. Lecture Notes in Social Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-64167-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64167-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64166-9

  • Online ISBN: 978-3-319-64167-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics