Skip to main content

The Stochastic Drift-Diffusion-Poisson System for Modeling Nanowire and Nanopore Sensors

  • Conference paper
  • First Online:
Book cover Progress in Industrial Mathematics at ECMI 2016 (ECMI 2016)

Part of the book series: Mathematics in Industry ((TECMI,volume 26))

Included in the following conference series:

Abstract

We use the stochastic drift-diffusion-Poisson system to model charge transport in nanoscale devices. This stochastic transport equation makes it possible to describe device variability, noise, and fluctuations. We present—as theoretical results—an existence and local uniqueness theorem for the weak solution of the stochastic drift-diffusion-Poisson system based on a fixed-point argument in appropriate function spaces. We also show how to quantify random-dopant effects in this formulation. Additionally, we have developed an optimal multi-level Monte-Carlo method for the approximation of the solution. The method is optimal in the sense that the computational work is minimal for a given error tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumgartner, S., Heitzinger, C., Vacic, A., Reed, M.A.: Predictive simulations and optimization of nanowire field-effect PSA sensors including screening. Nanotechnology 24, 225503 (2013)

    Article  Google Scholar 

  2. Bulyha, A., Heitzinger, C.: An algorithm for three-dimensional Monte-Carlo simulation of charge distribution at biofunctionalized surfaces. Nanoscale 3, 1608–1617 (2011)

    Article  Google Scholar 

  3. Fort, A., Rocchi, S., Serrano-Santos, M.B., Spinicci, R., Vignoli, V.: Surface state model for conductance responses during thermal-modulation of SnO-based thick film sensors: part I–model derivation. IEEE Trans. Instrum. Meas. 55, 2102–2106 (2006)

    Article  Google Scholar 

  4. Heitzinger, C., Taghizadeh, L.: Existence and local uniqueness for the stochastic drift-diffusion-Poisson system. Submitted for publication.

    Google Scholar 

  5. Heitzinger, C., Liu, Y., Mauser, N.J., Ringhofer, C., Dutton, R.W.: Calculation of fluctuations in boundary layers of nanowire field-effect biosensors. J. Comput. Theor. Nanosci. 7, 2574–2580 (2010)

    Article  Google Scholar 

  6. Heitzinger, C., Mauser, N.J., Ringhofer, C.: Multiscale modeling of planar and nanowire field-effect biosensors. SIAM J. Appl. Math. 70, 1634–1654 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tulzer, G., Baumgartner, S., Brunet, E., Mutinati, G.C., Steinhauer, S., Köck, A., Barbano, P.E., Heitzinger, C.: Kinetic parameter estimation and fluctuation analysis of CO at SnO2 single nanowires. Nanotechnology 24, 315501 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the FWF (Austrian Science Fund) START project no. Y660 PDE Models for Nanotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Taghizadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taghizadeh, L., Khodadadian, A., Heitzinger, C. (2017). The Stochastic Drift-Diffusion-Poisson System for Modeling Nanowire and Nanopore Sensors. In: Quintela, P., et al. Progress in Industrial Mathematics at ECMI 2016. ECMI 2016. Mathematics in Industry(), vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-63082-3_48

Download citation

Publish with us

Policies and ethics