Skip to main content

Planetary Ionospheres

Magnetic Fields, Chemical Processes, and Ionospheric Structure

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

Abstract

An ionosphere is a consequence of photoionization and is the partially ionized portion of a planetary atmosphere. It contains free electrons and ions, whose dynamics produces complex current systems, depending on ambient electric fields, and collisional properties, and gyration around magnetic fields. In terms of the vertical extent, the ionosphere coincides with the thermosphere, where the neutral species are diffusively separated, owing to strong molecular diffusivity and insufficient turbulent mixing. In a similar fashion, the vertical profiles of plasma species are greatly influenced by diffusive equilibrium. Ionospheric dynamics is modified by the geomagnetic field, which has a strong dipole component. Chemical processes have to be considered in detail in additional to dynamics in the ionosphere. Therefore, in the chemical continuity equation, chemical production and loss processes cannot be neglected. A Chapman layer is a first order approximation of production of ionization by the absorption of solar energy, which is a good description for the lower ionosphere (\(E, F_1\) regions), but higher up in the \(F_2 \) region transport becomes important. Qualitatively, Earth’s and Mars ionospheres demonstrate overall various similarities, besides major differences. Interaction with other species, and external (solar effects) and internal (lower atmospheric) processes play an important role in both ionospheres.

I am only a physicist with nothing material to show for my labours. I have never even seen the ionosphere, although I have worked on the subject for thirty years. That does show how lucky people can be. If there had been no ionosphere I would not have been standing here this morning.

Sir Edward Appleton (1956)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Caused by humans.

  2. 2.

    Unit adopted for international use under the Système International d’Unités. This sytem is used for all scientific purposes.

References

  • Appleton EV (1932) Wireless studies of the ionosphere. Inst Electr Eng-Proc Wirel Sect Inst 7(21):257–265

    Google Scholar 

  • Benna M, Mahaffy PR, Grebowsky JM, Fox JL, Yelle RV, Jakosky BM (2015) First measurements of composition and dynamics of the martian ionosphere by maven’s neutral gas and ion mass spectrometer. Geophys Res Lett 42(21):8958–8965. doi:10.1002/2015GL066146, http://dx.doi.org/10.1002/2015GL066146

  • Bilitza D, Altadill D, Zhang Y, Mertens C, Truhlik V, Richards P, McKinnell L, Reinisch B (2014) The international reference ionosphere 2012 a model of international collaboration. J Space Weather Space Clim 4:A07. doi:10.1051/swsc/2014004, http://dx.doi.org/10.1051/swsc/2014004

  • Chapman S (1931) The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth part ii. grazing incidence. Proc Phys Soc 43(5):483, http://stacks.iop.org/0959-5309/43/i=5/a=302

  • Chen RH, Cravens TE, Nagy AF (1978) The Martian ionosphere in light of the Viking observations. J Geophys Res 83(A8):647–664

    Article  Google Scholar 

  • Eleman F (1973) The geomagnetic field. In: Cosmical geophysics, pp 45–62

    Google Scholar 

  • Elias AG, Zossi BS, Yiğ E, Saavedra Z, de Haro Barbas BF (2017) Earth’s magnetic field effect on MUF calculation and consequences for hmf2 trend estimates. JASTP, http://dx.doi.org/10.1016/j.jastp.2017.03.004, http://www.sciencedirect.com/science/article/pii/S1364682616304229

  • Finlay C, Maus S, Beggan C, Bondar T, Chambodut A, Chernova T, Chulliat A, Golovkov V, Hamilton B, Hamoudi M et al (2010) International geomagnetic reference field: the eleventh generation. Geophys J Int 183(3):1216–1230

    Article  Google Scholar 

  • Finlay CC, Olsen N, Tøffner-Clausen L (2015) Dtu candidate field models for igrf-12 and the chaos-5 geomagnetic field model. Earth, Planets and Space 67(1):114. doi:10.1186/s40623-015-0274-3, http://dx.doi.org/10.1186/s40623-015-0274-3

  • Forbes JM, Roble RG, Fesen CG (1993) Acceleration, heating, and compositional mixing of the thermosphere due to upward propagating tides. J Geophys Res Space Physics 98(A1):311–321. doi:10.1029/92JA00442, http://dx.doi.org/10.1029/92JA00442

  • Garcia RR, Solomon S (1985) The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J Geophys Res 90:3850–3868, implementation of Lindzen’s parameterization into a two-dimensional dynamical model to study the effects of GWs in the MLT

    Google Scholar 

  • Gjerloev J (2012) The supermag data processing technique. J Geophys Res Space Physics 117(A9)

    Google Scholar 

  • Gong Y, Zhou Q, Zhang SD, Aponte N, Sulzer M, Gonzalez S (2013) The F region and topside ionosphere response to a strong geomagnetic storm at Arecibo. J Geophys Res 118:51775183. https://doi.org/10.1002/jgra.50502

  • Laštovička J (2006) Forcing of the ionosphere by waves from below. J Atmos Sol-Terr Phys 68:479–497

    Article  Google Scholar 

  • Laštovička J (2009) Lower ionosphere response to external forcing: a brief review. Adv Space Res 43:1–14

    Article  Google Scholar 

  • Liu AZ, Chester CS (2004) Vertical dynamical transport of mesopheric constituents by dissipating gravity waves. J Atmos Sol-Terr Phys 66:267–275. https://doi.org/10.1016/j.jastp.2003.11.002

    Article  Google Scholar 

  • Maus SS, Macmillan T, Chernova T, Choi S, Dater D, Golokov V, Lesur V, Lowes F, Lühr H, Mai W, McLean S, Olsen N, Rother M, Sabaka T, Thomson A, Zvera T (2005) The 10th generation international geomagnetic reference field. Phys Earth Planetary Interiors 151:320–322

    Article  Google Scholar 

  • Nair H, Allen M, Anbar AD, Yung YL, Clancy RT (1994) A photochemical model of the martian atmosphere. Icarus 111:124–150

    Article  Google Scholar 

  • Offermann D, Jarischa M, Schmidt H, Oberheide J, Grossmann KU, Guseva O, Russell JM, Mlynczak MG (2007) The "wave turbopause". J Atmos Sol-Terr Phys 69:2139–2158. https://doi.org/10.1016/j.jastp.2007.05.012

    Article  Google Scholar 

  • Olsen N, Hulot G, Lesur V, Finlay CC, Beggan C, Chulliat A, Sabaka TJ, Floberghagen R, Friis-Christensen E, Haagmans R, Kotsiaros S, Lhr H, Tffner-Clausen L, Vigneron P (2015) The swarm initial field model for the 2014 geomagnetic field. Geophys Res Lett 42(4):1092–1098. doi:10.1002/2014GL062659, http://dx.doi.org/10.1002/2014GL062659

  • Pancheva D, Miyoshi Y, Mukhtarov P, Jin H, Shinagawa H, Fujiwara H (2012) Global response of the ionosphere to atmospheric tides forced from below: Comparison between cosmic measurements and simulations by atmosphere-ionosphere coupled model gaia. J Geophys Res Space Phys 117(A7): doi:10.1029/2011JA017452, http://dx.doi.org/10.1029/2011JA017452

  • Ratcliffe JA (1972) An introduction to the ionosphere and magnetosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Ratcliffe JA, Weekes K (1960) The ionosphere. In: Ratcliffe JA (ed) Physics of the upper atmosphere, Academic press, pp 378–456

    Google Scholar 

  • Reinisch B (2000) Radio sounding of geospace plasmas. Física de la Tierra 12:105

    Google Scholar 

  • Rishbeth H, Garriott OK (1969) Introduction to ionospheric physics, International geophysics series, vol 14. Academic Press

    Google Scholar 

  • Rishbeth H, Mendillo M (2004) Ionospheric layers of mars and earth. Planet Space Sci 52: https://doi.org/10.1016/j.pss.2004.02.007

  • Schunk RW, Nagy AF (2009) Ionospheres: Physics, plasma physics and chemistry. Atmospheric and space science series. Cambridge University Press

    Google Scholar 

  • Singer SF, Maple E, Bowen WA (1951) Evidence for ionosphere currents from rocket experiments near the geomagnetic equator. J Geophys Res 56(2):265–281. doi:10.1029/JZ056i002p00265, http://dx.doi.org/10.1029/JZ056i002p00265

  • Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, Barrois O, Bertrand F, Bondar T, Boness A, Brocco L, Canet E, Chambodut A, Chulliat A, Coïsson P, Civet F, Du A, Fournier A, Fratter I, Gillet N, Hamilton B, Hamoudi M, Hulot G, Jager T, Korte M, Kuang W, Lalanne X, Langlais B, Léger JM, Lesur V, Lowes FJ, Macmillan S, Mandea M, Manoj C, Maus S, Olsen N, Petrov V, Ridley V, Rother M, Sabaka TJ, Saturnino D, Schachtschneider R, Sirol O, Tangborn A, Thomson A, Tøffner-Clausen L, Vigneron P, Wardinski I, Zvereva T (2015) International geomagnetic reference field: the 12th generation. Earth Planets Space 67(1):79. doi:10.1186/s40623-015-0228-9, http://dx.doi.org/10.1186/s40623-015-0228-9

  • Vichare G, Ridley A, Yiğit E (2012) Quiet-time low latitude ionospheric electrodynamics in the non-hydrostatic global ionospherethermosphere model. J Atmos Sol-Terr Phys 80:161–172. https://doi.org/10.1016/j.jastp.2012.01.009

    Article  Google Scholar 

  • Walterscheid RL, Hickey MP (2012) Gravity wave propagation in a diffusively separated gas: effects on the total gas. J Geophys Res 117:A05303. https://doi.org/10.1029/2011JA017451

    Google Scholar 

  • Witasse O, Cravens T, Mendillo M, Moses J, Kliore A, Nagy A, Breus T (2008) Solar system ionospheres. Space Sci Rev 139:235–265. https://doi.org/10.1007/s11214-008-9395-3

    Article  Google Scholar 

  • Withers P, Vogt M, Mahaffy P, Benna M, Elrod M, Jakosky B (2015) Changes in the thermosphere and ionosphere of mars from viking to maven. Geophys Res Lett 42: https://doi.org/10.1002/2015GRL065985

  • Yiğit E (2015) Atmospheric and space sciences: neutral atmospheres, vol 1. SpringerBriefs in Earth Sci., Springer, Netherlands. https://doi.org/10.1007/978-3-319-21581-5

  • Yiğit E, Ridley AJ (2011) Role of variability in determining the vertical wind speeds and structure. J Geophys Res 116:A12305. https://doi.org/10.1029/2011JA016714

    Google Scholar 

  • Yiğit E, Ridley AJ, Moldwin MB (2012) Importance of capturing heliospheric variability for studies of thermospheric vertical winds. J Geophys Res 117:A07306. https://doi.org/10.1029/2012JA017596

    Google Scholar 

  • Yiğit E, Knížová PK, Georgieva K, Ward W (2016) A review of vertical coupling in the atmosphere-ionosphere system: effects of waves, sudden stratospheric warmings, space weather, and of solar activity. J Atmos Sol-Terr Phys 141:1–12. https://doi.org/10.1016/j.jastp.2016.02.011, http://www.sciencedirect.com/science/article/pii/S1364682616300426

  • Yonezawa T (1966) Theory of formation of the ionosphere. Space Sci Rev 5:3–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Yiğit .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Yiğit, E. (2018). Planetary Ionospheres. In: Atmospheric and Space Sciences: Ionospheres and Plasma Environments. SpringerBriefs in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-62006-0_4

Download citation

Publish with us

Policies and ethics