Skip to main content

Microbial Communities as Ecological Indicators of Ecosystem Recovery Following Chemical Pollution

  • Chapter
  • First Online:

Abstract

‘Ecosystem recovery’ is a concept that emerged from the need to preserve our environment against increasing contamination from human activity. However, ecological indicators of ecosystem recovery remain scarce, and it is still difficult to assess recovery of ecological processes at relevant spatial and temporal scales. Microbial communities hold key relevance as indicators of ecosystem recovery as they are ubiquitous among diverse ecosystems, respond rapidly to environmental changes, and support many ecosystem functions and services through taxonomic and functional biodiversity. This chapter summarizes the state-of-the-art in knowledge on the processes driving the structural and functional recovery of phototroph and heterotroph microorganisms following chemical pollution . It covers several successful case studies providing proof of principle for the relevance of using microorganisms in recovery studies in various ecosystems such as soil, freshwater and seawater. Questions remain for microbial ecotoxicologists to fully understand and predict how structural and functional recovery observed at microbial scale can reflect the recovery of an ecosystem. Moreover, new standards and norms taking into account recent advances in microbial ecotoxicology are now necessary in order to inform legislators and policymakers on the importance of considering microorganisms in environmental risk assessment, including ecological recovery monitoring.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams SM, Hill WR, Peterson MJ, Ryon MG, Smith JG, Stewart AJ (2002) Assessing recovery in a stream ecosystem: applying multiple chemical and biological endpoints. Ecol Appl 12:1510–1527

    Article  Google Scholar 

  • Admiraal W, Barranguet C, van Beusekom SAM, Bleeker EAJ, van den Ende FP, van der Geest HG, Groenendijk D, Ivorra N, Kraak MHS, Stuijfzand SC (2000) Linking ecological and ecotoxicological techniques to support river rehabilitation. Chemosphere 41:289–295

    Article  CAS  PubMed  Google Scholar 

  • Alvarenga P, Palms P, Goncalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2009) Organic residues as immobilizing agents in aided phytostabilization: (II) effects on soil biochemical and ecotoxicological characteristics. Chemosphere 74:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Arini A, Feurtet-Mazel A, Maury-Brachet R, Coste M, Delmas F (2012a) Field translocation of diatom biofilms impacted by Cd and Zn to assess decontamination and community restructuring capacities. Ecol Ind 18:520–531

    Article  CAS  Google Scholar 

  • Arini A, Feurtet-Mazel A, Maury-Brachet R, Pokrovsky OS, Coste M, Delmas F (2012b) Recovery potential of periphytic biofilms translocated in artificial streams after industrial contamination (Cd and Zn). Ecotoxicology 21:1403–1414

    Article  CAS  PubMed  Google Scholar 

  • Arini A, Feurtet-Mazel A, Morin S, Maury-Brachet R, Coste M, Delmas F (2012c) Remediation of a watershed contaminated by heavy metals: a 2-year field biomonitoring of periphytic biofilms. Sci Total Environ 425:242–253

    Article  CAS  PubMed  Google Scholar 

  • Arini A, Durant F, Coste M, Delmas F, Feurtet-Mazel A (2013) Cadmium decontamination and reversal potential of teratological forms of the diatom Planothidium frequentissimum (Bacillariophyceae) after experimental contamination. J Phycol 49:361–370

    Article  CAS  PubMed  Google Scholar 

  • Bending GD, Rodriguez-Cruz MS, Lincoln SD (2007) Fungicide impacts on microbial communities in soils with contrasting management histories. Chemosphere 69:82–88

    Article  CAS  PubMed  Google Scholar 

  • Blanck H, Dahl B (1998) Recovery of marine periphyton communities around a Swedish marina after the ban of TBT use in antifouling paint. Mar Pollut Bull 36:437–442

    Article  CAS  Google Scholar 

  • Boivin MEY, Massieux B, Breure AM, Greve GD, Rutgers M, Admiraal W (2006) Functional recovery of biofilm bacterial communities after copper exposure. Environ Pollut 140:239–246

    Article  CAS  PubMed  Google Scholar 

  • Bombach P, Richnow HH, Kästner M, Fischer A (2010) Current approaches for the assessment of in situ biodegradation. Appl Microbiol Biotechnol 86:839–852

    Article  CAS  PubMed  Google Scholar 

  • Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. Plos Biol, vol 13

    Google Scholar 

  • Brain RA, Arnie JR, Porch JR, Hosmer AJ (2012) Recovery of photosynthesis and growth rate in green, blue-green, and diatom algae after exposure to atrazine. Environ Toxicol Chem 31:2572–2581

    Article  CAS  PubMed  Google Scholar 

  • Brock TCM, Crum SJH, Deneer JW, Heimbach F, Roijackers RMM, Sinkeldam JA (2004) Comparing aquatic risk assessment methods for the photosynthesis-inhibiting herbicides metribuzin and metamitron. Environ Pollut 130:403–426

    Article  CAS  PubMed  Google Scholar 

  • Bullock JM, Aronson J, Newton AC, Pywell RF, Rey-Benayas JM (2011) Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol Evol 26:541–549

    Article  PubMed  Google Scholar 

  • Castaldi P, Melis P, Silvetti M, Deiana P, Garau G (2009) Influence of pea and wheat growth on Pb, Cd, and Zn mobility and soil biological status in a polluted amended soil. Geoderma 151:241–248

    Article  CAS  Google Scholar 

  • Cattaneo A, Couillard Y, Wunsam S, Courcelles M (2004) Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Quebec, Canada). J Paleolimnol 32:163–175

    Article  Google Scholar 

  • Chen SK, Edwards CA (2001) A microcosm approach to assess the effects of fungicides on soil ecological processes and plant growth: comparisons of two soil types. Soil Biol Biochem 33:1981–1991

    Article  CAS  Google Scholar 

  • Chen SK, Edwards CA, Subler S (2001) Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biol Biochem 33:1971–1980

    Article  CAS  Google Scholar 

  • Cherry DS, Guthrie RK, Singleton FL, Harvey RS (1977) Recovery of aquatic bacterial populations in a stream after cessation of chemical pollution. In: Water Air and Soil Pollution, vol 7, pp 95–101

    Google Scholar 

  • Ciarkowska K, Solek-Podwika K, Wieczorek J (2014) Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area. J Environ Manage 132:250–256

    Article  CAS  PubMed  Google Scholar 

  • Clements WH, Rohr JR (2009) Community responses to contaminants: using basic ecological principles to predict ecotoxicological effects. Environ Toxicol Chem 28:1789–1800

    Article  CAS  PubMed  Google Scholar 

  • Congdon JD, Dunham AE, Hopkins WA, Rowe CL, Hinton TG (2001) Resource allocation-based life histories: a conceptual basis for studies of ecological toxicology. Environ Toxicol Chem 8:1698–1703

    Article  Google Scholar 

  • Coste M, Boutry S, Tison-Rosebery J, Delmas F (2009) Improvements of the biological diatom index (BDI): description and efficiency of the new version (BDI-2006). Ecol Ind 9:621–650

    Article  CAS  Google Scholar 

  • Delille D, Pelletier E, Rodriguez-Blanco A, Ghiglione J-F (2009) Effects of nutrient and temperature on degradation of petroleum hydrocarbons in sub-Antarctic coastal seawater. Polar Biol 32:1521–1528

    Article  Google Scholar 

  • Depledge MH (1998) Recovery of ecosystems and their components following exposure to pollution. J Aquat Ecosyst Stress Recovery 6:199–206

    Article  Google Scholar 

  • Dorigo U, Berard A, Bouchez A, Rimet F, Montuelle B (2010a) Transplantation of microbenthic algal assemblages to assess structural and functional recovery after diuron exposure. Arch Environ Contam Toxicol 59:555–563

    Article  CAS  PubMed  Google Scholar 

  • Dorigo U, Berard A, Rimet F, Bouchez A, Montuelle B (2010b) In situ assessment of periphyton recovery in a river contaminated by pesticides. Aquat Toxicol 98:396–406

    Article  CAS  PubMed  Google Scholar 

  • dos Santos JV, Varon-Lopez M, Soares C, Leal PL, Siqueira JO, Moreira FMD (2016) Biological attributes of rehabilitated soils contaminated with heavy metals. Environ Sci Pollut Res 23:6735–6748

    Article  Google Scholar 

  • Duarte CM, Borja A, Carstensen J, Elliott M, Krause-Jensen D, Marba N (2015) Paradigms in the recovery of estuarine and coastal ecosystems. Estuaries Coasts 38:1202–1212

    Article  Google Scholar 

  • EFSA Scientific Committee (2016) Scientific opinion on recovery in environmental risk assessments at EFSA. EFSA J 14:4313

    Google Scholar 

  • Epelde L, Becerril JM, Hernandez-Allica J, Barrutia O, Garbisu C (2008) Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Appl Soil Ecol 39:299–310

    Article  Google Scholar 

  • Epelde L, Mijangos I, Becerril JM, Garbisu C (2009) Soil microbial community as bioindicator of the recovery of soil functioning derived from metal phytoextraction with sorghum. Soil Biol Biochem 41:1788–1794

    Article  CAS  Google Scholar 

  • Fechner LC, Versace F, Gourlay-France C, Tusseau-Vuillemin M-H (2012) Adaptation of copper community tolerance levels after biofilm transplantation in an urban river. Aquat Toxicol 106:32–41

    Article  PubMed  Google Scholar 

  • Garcia-Armisen T, Inceoglu O, Ouattara NK, Anzil A, Verbanck MA, Brion N, Servais P (2014) Seasonal variations and resilience of bacterial communities in a sewage polluted urban river. Plos One, vol 9

    Google Scholar 

  • Geiszinger A, Bonnineau C, Faggiano L, Guasch H, Lopez-Doval JC, Proia L, Ricart M, Ricciardi F, Romani A, Rotter S, Munoz I, Schmitt-Jansen M, Sabater S (2009) The relevance of the community approach linking chemical and biological analyses in pollution assessment. TrAC Trends Anal Chem 28:619–626

    Article  CAS  Google Scholar 

  • Gergs A, Classen S, Strauss T, Ottermanns R, Brock TCM, Ratte HT, Hommen U, Preuss TG (2016) Ecological recovery potential of freshwater organisms: consequences for environmental risk assessment of chemicals. In: Reviews of environmental contamination and toxicology, vol 236, v. 236, pp 259–294

    Google Scholar 

  • Ghiglione JF, Martin-Laurent F, Pesce S (2016) Microbial ecotoxicology: an emerging discipline facing contemporary environmental threats. Environ Sci Pollut Res 23:3981–3983

    Article  Google Scholar 

  • Gomez-Sagasti MT, Alkorta I, Becerril JM, Epelde L, Anza M, Garbisu C (2012) Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. In: Water air and soil pollution, vol 223, pp 3249–3262

    Google Scholar 

  • Goupil K, Nkongolo K (2014) Assessing soil respiration as an indicator of soil microbial activity in reclaimed metal contaminated lands. Am J Environ Sci, pp 403–411

    Google Scholar 

  • Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, Sorensen SJ, Baath E, Bloem J, de Ruiter PC, Dolfing J, Nicolardot B (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90:279–294

    Article  Google Scholar 

  • Gustavson K, Mohlenberg F, Schluter L (2003) Effects of exposure duration of herbicides on natural stream periphyton communities and recovery. Arch Environ Contam Toxicol 45:48–58

    Article  CAS  PubMed  Google Scholar 

  • Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  PubMed  Google Scholar 

  • Hering D, Borja A, Carstensen J, Carvalho L, Elliott M, Feld CK, Heiskanen A-S, Johnson RK, Moe J, Pont D, Solheim AL, van de Bund W (2010) The European water framework directive at the age of 10: a critical review of the achievements with recommendations for the future. Sci Total Environ 408:4007–4019

    Article  CAS  PubMed  Google Scholar 

  • Hering D, Borja A, Carvalho L, Feld CK (2013) Assessment and recovery of European water bodies: key messages from the WISER project. Hydrobiologia 704:1–9

    Article  Google Scholar 

  • Hynynen J, Palomaki A, Merilainen JJ, Witick A, Mantykoski K (2004) Pollution history and recovery of a boreal lake exposed to a heavy bleached pulping effluent load. J Paleolimnol 32:351–374

    Article  Google Scholar 

  • Ivorra N, Hettelaar J, Tubbing GMJ, Kraak MHS, Sabater S, Admiraal W (1999) Translocation of microbenthic algal assemblages used for in situ analysis of metal pollution in rivers. Arch Environ Contam Toxicol 37:19–28

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Wu L, Li N, Luo Y, Liu L, Zhao Q, Zhang L, Christie P (2010) Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. Eur J Soil Biol 46:18–26

    Article  CAS  Google Scholar 

  • Karpouzas DG, Tsiamis G, Trevisan M, Ferrari F, Malandain C, Sibourg O, Martin-Laurent F (2016) “LOVE TO HATE” pesticides: felicity or curse for the soil microbial community? An FP7 IAPP Marie Curie project aiming to establish tools for the assessment of the mechanisms controlling the interactions of pesticides with soil microorganisms. Environ Sci Pollut Res 23:18947–18951

    Article  CAS  Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69

    Article  CAS  PubMed  Google Scholar 

  • Kelly JR, Harwell MA (1990) Indicators of ecosystem recovery. Environ Manage 14:527–545

    Article  Google Scholar 

  • Kelly JJ, Tate RL (1998) Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter. J Environ Qual 27:609–617

    Article  CAS  Google Scholar 

  • Kelly JJ, Haggblom MM, Tate RL (2003) Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biol Fertil Soils 38:65–71

    Article  CAS  Google Scholar 

  • Knauert S, Dawo U, Hollender J, Hommen U, Knauer K (2009) Effecst of photosystem II inhibitors and their mixture on freshwater phytoplankton sucession in outdoor mesocosms. Environ Toxicol Chem 28:836–845

    Article  CAS  PubMed  Google Scholar 

  • Kostov O, Van Cleemput O (2001a) Microbial activity of Cu contaminated soils and effect of lime and compost on soil resiliency. Compost Sci Utilization 9:336–351

    Article  Google Scholar 

  • Kostov O, Van Cleemput O (2001b) Nitrogen transformations in copper-contaminated soils and effects of lime and compost application on soil resiliency. Biol Fertil Soils 33:10–16

    Article  CAS  Google Scholar 

  • Krediet CJ, Ritchie KB, Paul VJ, Teplitski M (2013) Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc R Soc B Biol Sci, vol 280

    Google Scholar 

  • Lambert A-S, Morin S, Artigas J, Volat B, Coquery M, Neyra M, Pesce S (2012) Structural and functional recovery of microbial biofilms after a decrease in copper exposure: Influence of the presence of pristine communities. Aquat Toxicol 109:118–126

    Article  CAS  PubMed  Google Scholar 

  • Lambert AS, Pesce S, Foulquier A, Gahou J, Coquery M, Dabrin A (2015) Improved short-term toxicity test protocol to assess metal tolerance in phototrophic periphyton: toward standardization of PICT approaches. Environ Sci Pollut Res 22:4037–4045

    Article  CAS  Google Scholar 

  • Larras F, Rimet F, Gregorio V, Berard A, Leboulanger C, Montuelle B, Bouchez A (2016) Pollution-induced community tolerance (PICT) as a tool for monitoring Lake Geneva long-term in situ ecotoxic restoration from herbicide contamination. Environ Sci Pollut Res 23:4301–4311

    Article  CAS  Google Scholar 

  • Laviale M, Morin S, Creach A (2011) Short term recovery of periphyton photosynthesis after pulse exposition to the photosystem II inhibitors atrazine and isoproturon. Chemosphere 84:731–734

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JR, Kopf G, Headley JV, Neu TR (2001) Sorption and metabolism of selected herbicides in river biofilm communities. Can J Microbiol 47(7):634–641

    Google Scholar 

  • Madsen EL (2011) Microorganisms and their roles in fundamental biogeochemical cycles. Curr Opin Biotechnol 22:456–464

    Article  CAS  PubMed  Google Scholar 

  • Martinho J, Campos B, Bras I, Silva E (2015) The roel of compost properties in sorption of heavy metals. Environ Prot Eng 41:57–65

    Google Scholar 

  • Martin-Laurent F, Kandeler E, Petric I, Djuric S, Karpouzas DG (2013) ECOFUN-MICROBIODIV: an FP7 European project for developing and evaluating innovative tools for assessing the impact of pesticides on soil functional microbial diversity–towards new pesticide registration regulation? Environ Sci Pollut Res Int 20:1203–1205

    Article  PubMed  Google Scholar 

  • Mohr S, Feibicke M, Berghahn R, Schmiediche R, Schmidt R (2008a) Response of plankton communities in freshwater pond and stream mesocosms to the herbicide metazachlor. Environ Pollut 152:530–542

    Article  CAS  PubMed  Google Scholar 

  • Mohr S, Schroeder H, Feibicke M, Berghahn R, Arp W, Nicklisch A (2008b) Long-term effects of the antifouling booster biocide Irgarol 1051 on periphyton, plankton and ecosystem function in freshwater pond mesocosms. Aquat Toxicol 90:109–120

    Article  CAS  PubMed  Google Scholar 

  • Monard C, Martin-Laurent F, Lima O, Devers-Lamrani M, Binet F (2013) Estimating the biodegradation of pesticide in soils by monitoring pesticide-degrading gene expression. Biodegradation 24:203–213

    Google Scholar 

  • Montoya D, Rogers L, Memmott J (2012) Emerging perspectives in the restoration of biodiversity-based ecosystem services. Trends Ecol Evol 27:666–672

    Article  PubMed  Google Scholar 

  • Montuelle B, Dorigo U, Berard A, Volat B, Bouchez A, Tlili A, Gouy V, Pesce S (2010) The periphyton as a multimetric bioindicator for assessing the impact of land use on rivers: an overview of the Ardières-Morcille experimental watershed (France). Hydrobiologia 657:123–141

    Article  CAS  Google Scholar 

  • Morelli E, Scarano G (2001) Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom Phaeodactylum tricornutum. Mar Environ Res 52:383–395

    Article  CAS  PubMed  Google Scholar 

  • Morin S, Pesce S, Tlili A, Coste M, Montuelle B (2010) Recovery potential of periphytic communities in a river impacted by a vineyard watershed. Ecol Ind 10:419–426

    Article  CAS  Google Scholar 

  • Morin S, Lambert A-S, Artigas J, Coquery M, Pesce S (2012) Diatom immigration drives biofilm recovery after chronic copper exposure. Freshw Biol 57:1658–1666

    Article  Google Scholar 

  • Muyssen BTA, Janssen CR (2001) Zinc acclimation and its effect on the zinc tolerance of Raphidocelis subcapitata and Chlorella vulgaris in laboratory experiments. Chemosphere 45:507–514

    Article  CAS  PubMed  Google Scholar 

  • Ortiz Hernandez ML, Sánchez SE, González ED, Godínez MLC (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. In: Intech open science open mind, pp 251–287

    Google Scholar 

  • Pelletier E, Delille D, Delille B (2004) Crude oil bioremediation in sub-Antarctic intertidal sediments: chemistry and toxicity of oiled residues. Mar Environ Res 57:311–327

    Article  CAS  PubMed  Google Scholar 

  • Pesce S, Martin-Laurent F, Rouard N, Montuelle B (2009) Potential for microbial diuron mineralisation in a small wine-growing watershed: from treated plots to lotic receiver hydrosystem. Pest Manag Sci 65:651–657

    Article  CAS  PubMed  Google Scholar 

  • Pesce S, Margoum C, Montuelle B (2010) In situ relationships between spatio-temporal variations in diuron concentrations and phototrophic biofilm tolerance in a contaminated river. Water Res 44:1941–1949

    Article  CAS  PubMed  Google Scholar 

  • Pesce S, Bouchez A, Montuelle B (2011) Effects of organic herbicides on phototrophic microbial communities in freshwater ecosystems. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 214, pp 87–124

    Google Scholar 

  • Pesce S, Margoum C, Rouard N, Foulquier A, Martin-Laurent F (2013) Freshwater sediment pesticide biodegradation potential as an ecological indicator of microbial recovery following a decrease in chronic pesticide exposure: a case study with the herbicide diuron. Ecol Ind 29:18–25

    Article  CAS  Google Scholar 

  • Pesce S, Margoum C, Foulquier A (2016) Pollution-induced community tolerance for in situ assessment of recovery in river microbial communities following the ban of the herbicide diuron. Agric Ecosyst Environ 221:79–86

    Article  CAS  Google Scholar 

  • Philippot L, Ritz K, Pandard P, Hallin S, Martin-Laurent F (2012) Standardisation of methods in soil microbiology: progress and challenges. FEMS Microbiol Ecol 82:1–10

    Article  CAS  PubMed  Google Scholar 

  • Prosser RS, Brain RA, Hosmer AJ, Solomon KR, Hanson ML (2013) Assessing sensitivity and recovery of field-collected periphyton acutely exposed to atrazine using PSII inhibition under laboratory conditions. Ecotoxicology 22:1367–1383

    Article  CAS  PubMed  Google Scholar 

  • Prosser RS, Brain RA, Andrus JM, Hosmer AJ, Solomon KR, Hanson ML (2015) Assessing temporal and spatial variation in sensitivity of communities of periphyton sampled from agroecosystem to, and ability to recover from, atrazine exposure. Ecotoxicol Environ Saf 118:204–216

    Article  CAS  PubMed  Google Scholar 

  • Rimet F, Cauchie HM, Hoffmann L, Ector L (2005) Response of diatom indices to simulated water quality improvements in a river. J Appl Phycol 17:119–128

    Article  Google Scholar 

  • Ritz K, Black HIJ, Campbell CD, Harris JA, Wood C (2009) Selecting biological indicators for monitoring soils: a framework for balancing scientific and technical opinion to assist policy development. Ecol Ind 9:1212–1221

    Article  CAS  Google Scholar 

  • Rotter S, Sans-Piche F, Streck G, Altenburger R, Schmitt-Jansen M (2011) Active bio-monitoring of contamination in aquatic systems-an in situ translocation experiment applying the PICT concept. Aquat Toxicol 101:228–236

    Article  CAS  PubMed  Google Scholar 

  • Sauret C, Christaki U, Moutsaki P, Hatzianestis I, Gogou A, Ghiglione J-F (2012) Influence of pollution history on the response of coastal bacterial and nanoeukaryote communities to crude oil and biostimulation assays. Mar Environ Res 79:70–78

    Article  CAS  PubMed  Google Scholar 

  • Sauret C, Boettjer D, Talarmin A, Guigue C, Conan P, Pujo-Pay M, Ghiglione J-F (2015) Top-down control of diesel-degrading prokaryotic communities. Microb Ecol 70:445–458

    Article  CAS  PubMed  Google Scholar 

  • Sauret C, Tedetti M, Guigue C, Dumas C, Lami R, Pujo-Pay M, Conan P, Goutx M, Ghiglione J-F (2016) Influence of PAHs among other coastal environmental variables on total and PAH-degrading bacterial communities. Environ Sci Pollut Res 23:4242–4256

    Article  CAS  Google Scholar 

  • Schloter M, Dilly O, Munch JC (2003) Indicators for evaluating soil quality. Agrc Ecosyst Environ 98:255–262

    Article  Google Scholar 

  • Schmitt-Jansen M, Veit U, Dudel G, Altenburger R (2008) An ecological perspective in aquatic ecotoxicology: approaches and challenges. Basic Appl Ecol 9:337–345

    Article  CAS  Google Scholar 

  • Singh JS (2015) Microbes: the chief ecological engineers in reinstating equilibrium in degraded ecosystems. Agric Ecosyst Environ 203:80–82

    Article  Google Scholar 

  • Sipilä TP, Keskinen AK, Åkerman ML, Fortelius C, Haahtela K, Yrjälä K (2008) High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME J 2:968–981

    Article  PubMed  Google Scholar 

  • Smith CJ, Osborn AM (2008) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67:6–20

    Article  Google Scholar 

  • Thompson PA, Couture P (1993) Physiology of carbon assimilation in a green alga during exposure to and recovery from cadmium. Ecotoxicol Environ Saf 26:205–215

    Article  CAS  PubMed  Google Scholar 

  • Tlili A, Berard A, Blanck H, Bouchez A, Cássio F, Eriksson KM, Morin S, Montuelle B, Navarro E, Pascoal C, Pesce S, Schmitt-Jansen M, Behra R (2015) Pollution-induced community tolerance (PICT): towards an ecologically relevant risk assessment of chemicals in aquatic systems. Freshwater Biol

    Google Scholar 

  • Tripathi BN, Gaur JP (2006) Physiological behavior of Scenedesmus sp during exposure to elevated levels of Cu and Zn and after withdrawal of metal stress. Protoplasma 229:1–9

    Article  CAS  PubMed  Google Scholar 

  • Tripathi BN, Mehta SK, Gaur JP (2004) Recovery of uptake and assimilation of nitrate in Scenedesmus sp previously exposed to elevated levels of Cu2+ and Zn2+. J Plant Physiol 161:543–549

    Article  CAS  PubMed  Google Scholar 

  • Vallotton N, Ilda R, Eggen L, Escher BI, Krayenbuehl J, Chevre N (2008a) Effect of pulse herbicidal exposure on Scenedesmus vacuolatus: a comparison of two photosystem II inhibitors. Environ Toxicol Chem 27:1399–1407

    Article  CAS  PubMed  Google Scholar 

  • Vallotton N, Moser D, Eggen RIL, Junghans M, Chevre N (2008b) S-metolachlor pulse exposure on the alga Scenedesmus vacuolatus: effects during exposure and the subsequent recovery. Chemosphere 73:395–400

    Article  CAS  PubMed  Google Scholar 

  • Van-Camp L, Bujarrabal B, Gentile AR, Jones RJA, Montanarella L, lazabal C, Selvaradjou SK (2004) Reports of the technical working groups established under the thematic strategy for soil protection. Office for Official Publications of the European Communities, Luxembourg, EUR 21319 EN/4, 872 pages

    Google Scholar 

  • Wang M-J, Wang W-X (2011) Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: recovery from cadmium exposure. Aquat Toxicol 101:387–395

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Yang L, Wang W-X (2009) Acclimation to and recovery from cadmium and zinc exposure by a freshwater cyanobacterium, Microcystis aeruginosa. Aquat Toxicol 93:1–10

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Pesce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pesce, S., Ghiglione, JF., Martin-Laurent, F. (2017). Microbial Communities as Ecological Indicators of Ecosystem Recovery Following Chemical Pollution. In: Cravo-Laureau, C., Cagnon, C., Lauga, B., Duran, R. (eds) Microbial Ecotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-61795-4_10

Download citation

Publish with us

Policies and ethics